668430-Roa

2 2.9. References 59 Deb, K. (2005). “Multi-Objective Optimization”. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Ed. by E. K. Burke and G. Kendall. Boston, MA: Springer US, pp. 273–316. isbn: 978-0-387-28356-2. doi: 10.1007/0-387-28356-0_10. – (2011). “Multi-objective optimisation using evolutionary algorithms: an introduction”. In: Multi-objective evolutionary optimisation for product design and manufacturing. Springer, pp. 3–34. doi: 10.1007/978-0-85729-652-8_1. Hunt, A., B. E. Kelly, J. S. Mullhi, F. P. Lees, and A. G. Rushton (1993). “The propagation of faults in process plants: 6, Overview of, and modelling for, fault tree synthesis”. In: Reliability Engineering & System Safety 39 (2), pp. 173–194. doi: 10.1016/09518320(93)90041-V. Johnson, T. and P. Husbands (1990). “System identification using genetic algorithms”. In: International Conference on Parallel Problem Solving from Nature. Springer, pp. 85–89. Kabir, S. (2017). “An overview of fault tree analysis and its application in model based dependability analysis”. In: Expert Systems with Applications 77, pp. 114–135. doi: 10.1016/j.eswa.2017.01.058. Lazarova-Molnar, S., P. Niloofar, and G. K. Barta (2020). “Data-Driven Fault Tree Modeling for Reliability Assessment of Cyber-Physical Systems”. In: 2020 Winter Simulation Conference (WSC), pp. 2719–2730. doi: 10.1109/WSC48552.2020.9383882. Linard, A., D. Bucur, and M. Stoelinga (2019). “Fault Trees from Data: E’cient Learning with an Evolutionary Algorithm”. In: International Symposium on Dependable Software Engineering: Theories, Tools, and Applications. Vol. 11951 LNCS, pp. 19–37. doi: 10.1007/978-3-030-35540-1_2. Long, Q., X. Wu, and C. Wu (2021). “Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison”. In: Journal of Industrial & Management Optimization 17.2, p. 1001. doi: 10.3934/jimo.2020009. Madden, M. G. and P. J. Nolan (1994). “Generation of fault trees from simulated incipient fault case data”. In: WIT Transactions on Information and Communication Technologies 6. doi: 10.2495/AI940611. Martí, L., E. Segredo, N. (nchez-Pi, and E. Hart (2017). “Impact of selection methods on the diversity of many-objective Pareto set approximations”. In: Procedia Computer Science 112. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 21st International Conference, KES-20176-8 September 2017, Marseille, France, pp. 844–853. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2017. 08.077. Mentes, A. and I. H. Helvacioglu (2011). “An application of fuzzy fault tree analysis for spread mooring systems”. In: Ocean Engineering 38 (2-3), pp. 285–294. doi: 10.1016/ j.oceaneng.2010.11.003. NASA (2002). Fault Tree Handbook with Aerospace Applications. Handbook. U.S. National Aeronautics and Space Administration. Ojha, M., K. P. Singh, P. Chakraborty, and S. Verma (2019). “A review of multi-objective optimisation and decision making using evolutionary algorithms”. In: International Journal of Bio-Inspired Computation 14.2, pp. 69–84. doi: 10.1504/ijbic.2019. 101640. Robert, P. and Y. Escoufier (1976). “A unifying tool for linear multivariate statistical methods: The RV-coe’cient”. In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 25 (3), pp. 257–265. doi: 10.2307/2347233. Salem, S. L., G. E. Apostolakis, and D. Okrent (Nov. 1976). “Computer-oriented approach to fault-tree construction”. In: doi: 10.2172/7132148. Signoret, J.-P. and A. Leroy (2021). “Automated Fault Tree Building”. In: Reliability Assessment of Safety and Production Systems: Analysis, Modelling, Calculations and

RkJQdWJsaXNoZXIy MjY0ODMw