668430-Roa

32 Chapter 1. Introduction Yin, Z., A. S. Leon, A. Sharifi, and M. H. Amini (n.d.). “Optimal Control of Combined Sewer Systems to Minimize Sewer Overflows by Using Reinforcement Learning”. In: World Environmental and Water Resources Congress 2023, pp. 711–722. doi: 10.1061/ 9780784484852.067. Zeng, X., Z. Wang, H. Wang, S. Zhu, and S. Chen (2023). “Progress in Drainage Pipeline Condition Assessment and Deterioration Prediction Models”. In: Sustainability 15.4, p. 3849. doi: 10.3390/su15043849. Zhang, J. and J. Lee (2011). “A review on prognostics and health monitoring of Li-ion battery”. In: Journal of Power Sources 196.15, pp. 6007–6014. issn: 0378-7753. doi: 10.1016/j.jpowsour.2011.03.101. Zhang, L., J. Lin, B. Liu, Z. Zhang, X. Yan, and M. Wei (2019). “A Review on Deep Learning Applications in Prognostics and Health Management”. In: IEEE Access 7, pp. 162415–162438. doi: 10.1109/ACCESS.2019.2950985. Zhang, W., D. Yang, and H. Wang (2019). “Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey”. In: IEEE Systems Journal 13.3, pp. 2213– 2227. doi: 10.1109/JSYST.2019.2905565. Zhang, X., R. Xu, C. Kwan, S. Liang, Q. Xie, and L. Haynes (2005). “An integrated approach to bearing fault diagnostics and prognostics”. In: Proceedings of the 2005, American Control Conference, 2005. 2750–2755 vol. 4. doi: 10 . 1109 / ACC . 2005 . 1470385. Zhou, D., Z. Yu, H. Zhang, and S. Weng (2016). “A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation”. In: Energy 109, pp. 420–429. issn: 0360-5442. doi: 10.1016/j.energy.2016. 05.008. Zhu, S.-P., H.-Z. Huang, W. Peng, H.-K. Wang, and S. Mahadevan (2016). “Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty”. In: Reliability Engineering & System Safety 146, pp. 1–12. issn: 0951-8320. doi: 10.1016/j.ress.2015.10.002. Zio, E. (2022). “Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice”. In: Reliability Engineering & System Safety 218, p. 108119. issn: 0951-8320. doi: 10.1016/j.ress.2021.108119.

RkJQdWJsaXNoZXIy MjY0ODMw