30 Chapter 1. Introduction Prakash, G., X.-X. Yuan, B. Hazra, and D. Mizutani (May 2021). “Toward a Big DataBased Approach: A Review on Degradation Models for Prognosis of Critical Infrastructure”. In: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 4. doi: 10.1115/1.4048787. Puterman, M. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. John Wiley & Sons. isbn: 9781118625873. url: https://books.google.nl/books?id=VvBjBAAAQBAJ. Qasem, A. and R. Jamil (2021). “GIS-Based Financial Analysis Model for Integrated Maintenance and Rehabilitation of Underground Pipe Networks”. In: Journal of Performance of Constructed Facilities 35.5, p. 04021046. doi: 10.1061/(ASCE)CF.19435509.0001623. Ranjith, S., S. Setunge, R. Gravina, and S. Venkatesan (2013). “Deterioration Prediction of Timber Bridge Elements Using the Markov Chain”. In: Journal of Performance of Constructed Facilities 27.3, pp. 319–325. doi: 10.1061/(ASCE)CF.1943-5509.0000311. Rezamand, M., M. Kordestani, R. Carriveau, D. S.-K. Ting, M. E. Orchard, and M. Saif (2020). “Critical Wind Turbine Components Prognostics: A Comprehensive Review”. In: IEEE Transactions on Instrumentation and Measurement 69.12, pp. 9306–9328. doi: 10.1109/TIM.2020.3030165. Ruijters, E. and M. Stoelinga (2015). “Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools”. In: Computer Science Review 15-16, pp. 29–62. issn: 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2015.03.001. Saddiqi, M. M., W. Zhao, S. Cotterill, and R. K. Dereli (2023). “Smart management of combined sewer overflows: From an ancient technology to artificial intelligence”. In: Wiley Interdisciplinary Reviews: Water 10.3, e1635. doi: 10.1002/wat2.1635. Salem, S. L., G. E. Apostolakis, and D. Okrent (Nov. 1976). “Computer-oriented approach to fault-tree construction”. In: doi: 10.2172/7132148. Shafiee, M. and J. D. Sørensen (2019). “Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies”. In: Reliability Engineering & System Safety 192. Complex Systems RAMS Optimization: Methods and Applications, p. 105993. issn: 0951-8320. doi: 10.1016/j.ress.2017.10.025. Sheppard, J. W., M. A. Kaufman, and T. J. Wilmering (2008). “IEEE standards for prognostics and health management”. In: 2008 IEEE AUTOTESTCON, pp. 97–103. doi: 10.1109/AUTEST.2008.4662592. Signoret, J.-P. and A. Leroy (Feb. 2021). “Reliability Block Diagrams (RBDs)”. In: Reliability Assessment of Safety and Production Systems. Springer Series in Reliability Engineering. Springer. Chap. 0, pp. 195–208. doi: 10.1007/978-3-030-64708-7. Sikorska, J., M. Hodkiewicz, and L. Ma (2011). “Prognostic modelling options for remaining useful life estimation by industry”. In: Mechanical Systems and Signal Processing 25.5, pp. 1803–1836. issn: 0888-3270. doi: 10.1016/j.ymssp.2010.11.018. Sinha, Y. and J. Steel (2015). “A progressive study into o!shore wind farm maintenance optimisation using risk based failure analysis”. In: Renewable and Sustainable Energy Reviews 42, pp. 735–742. issn: 1364-0321. doi: https://doi.org/10.1016/j.rser. 2014.10.087. Siraskar, R., S. Kumar, S. Patil, A. Bongale, and K. Kotecha (2023). “Reinforcement learning for predictive maintenance: A systematic technical review”. In: Artificial Intelligence Review 56.11, pp. 12885–12947. doi: 10.1007/s10462-023-10468-6. Stamatis, D. (2003). Failure Mode and E"ect Analysis: FMEA from Theory to Execution. ASQ Quality Press. isbn: 9780873895989. url: https://books.google.nl/books?id= T9TxNHWJZmIC. Stewart, W. J. (2009). Probability, Markov chains, queues, and simulation: the mathematical basis of performance modeling. Princeton University Press. Chap. 9. Discrete- and
RkJQdWJsaXNoZXIy MjY0ODMw