1 1.9. References 29 Maddikunta, P. K. R., Q.-V. Pham, P. B, N. Deepa, K. Dev, T. R. Gadekallu, R. Ruby, and M. Liyanage (2022). “Industry 5.0: A survey on enabling technologies and potential applications”. In: Journal of Industrial Information Integration 26, p. 100257. doi: https://doi.org/10.1016/j.jii.2021.100257. Mahfoud, H. and A. Biyaali (Mar. 2018). “Dependability based maintenance optimization in healthcare domain”. In: Journal of Quality in Maintenance Engineering 24, pp. 00–00. doi: 10.1108/JQME-07-2016-0029. Marc Ribalta Ramon Bejar, C. M. and E. Rubión (2023). “Machine learning solutions in sewer systems: a bibliometric analysis”. In: Urban Water Journal 20.1, pp. 1–14. doi: 10.1080/1573062X.2022.2138460. Marugán, A. P. (2023). “Applications of Reinforcement Learning for maintenance of engineering systems: A review”. In: Advances in Engineering Software 183, p. 103487. issn: 0965-9978. doi: 10.1016/j.advengsoft.2023.103487. McPherson, J. W. (2019). Reliability Physics and Engineering: Time-To-Failure Modeling. 3rd ed. Springer Cham, pp. XVII, 463. isbn: 978-3-319-93682-6. doi: 10.1007/978-3319-93683-3. Modarres, M., M. P. Kaminskiy, and V. Krivtsov (2016). Reliability Engineering and Risk Analysis: A Practical Guide. 3rd ed. CRC Press. doi: 10.1201/9781315382425. Mrugalska, B. (2019). “Remaining Useful Life as Prognostic Approach: A Review”. In: Human Systems Engineering and Design. Ed. by T. Ahram, W. Karwowski, and R. Taiar. Cham: Springer International Publishing, pp. 689–695. isbn: 978-3-030-02053-8. doi: 10.1007/978-3-030-02053-8_105. Nelson, W. B. (2005). Applied Life Data Analysis. John Wiley & Sons. isbn: 978-0-47172522-0. NENEN13306: Maintenance - Maintenance terminology (2017). https://standards. globalspec.com/std/10272557/en-13306. Accessed: 2023-06-30. O’Connor, P. and A. Kleyner (Jan. 2012). Practical Reliability Engineering, Fifth Edition. isbn: 978-0-470-97981-5. doi: 10.1002/9781119961260. Obradovi#, D., M. $perac, and S. Marenjak (2019). “Possibilities of using expert methods for sewer system maintenance optimisation”. In: Gra!evinar 71.9, pp. 769–779. doi: 10.14256/JCE.2589.2018. Ogunfowora, O. and H. Najjaran (2023). “Reinforcement and deep reinforcement learningbased solutions for machine maintenance planning, scheduling policies, and optimization”. In: Journal of Manufacturing Systems 70, pp. 244–263. issn: 0278-6125. doi: 10.1016/j.jmsy.2023.07.014. Ojha, M., K. P. Singh, P. Chakraborty, and S. Verma (2019). “A review of multi-objective optimisation and decision making using evolutionary algorithms”. In: International Journal of Bio-Inspired Computation 14.2, pp. 69–84. doi: 10.1504/ijbic.2019. 101640. Oztemel, E. and S. Gursev (2020). “Literature review of Industry 4.0 and related technologies”. In: Journal of intelligent manufacturing 31.1, pp. 127–182. doi: 10.1007/s10845018-1433-8. Peng, J., G. Xia, Y. Li, Y. Song, and M. Hao (2022). “Knowledge-based prognostics and health management of a pumping system under the linguistic decision-making context”. In: Expert Systems with Applications 209, p. 118379. issn: 0957-4174. doi: 10.1016/j.eswa.2022.118379. Pourgholamali, M., S. Labi, and K. C. Sinha (2023). “Multi-objective optimization in highway pavement maintenance and rehabilitation project selection and scheduling: A state-of-the-art review”. In: Journal of Road Engineering 3.3, pp. 239–251. issn: 2097-0498. doi: 10.1016/j.jreng.2023.05.003.
RkJQdWJsaXNoZXIy MjY0ODMw