668430-Roa

1 1.9. References 27 Elattar, H. M., H. K. Elminir, and A. M. Riad (2016). “Prognostics: a literature review”. In: Complex & Intelligent Systems 2.2, pp. 125–154. doi: 10.1007/s40747-016-0019-3. Elmasry, M., T. Zayed, and A. Hawari (2019). “Multi-Objective Optimization Model for Inspection Scheduling of Sewer Pipelines”. In: Journal of Construction Engineering and Management 145.2, p. 04018129. doi: 10.1061/(ASCE)CO.1943-7862.0001599. EN 13508:1 -Investigation and assessment of drain and sewer systems outside buildings - Part 1: General Requirements (Oct. 2012). Standard. Avenue Marnix 17, B-1000 Brussels: European Committee for Standardization (CEN). Esteban, A., A. Zafra, and S. Ventura (2022). “Data mining in predictive maintenance systems: A taxonomy and systematic review”. In: WIREs Data Mining and Knowledge Discovery 12.5, e1471. doi: https://doi.org/10.1002/widm.1471. Fink, O., Q. Wang, M. Svensén, P. Dersin, W.-J. Lee, and M. Duco!e (2020). “Potential, challenges and future directions for deep learning in prognostics and health management applications”. In: Engineering Applications of Artificial Intelligence 92, p. 103678. issn: 0952-1976. doi: 10.1016/j.engappai.2020.103678. Frangopol, D. M. and P. Bocchini (2012). “Bridge network performance, maintenance and optimisation under uncertainty: accomplishments and challenges”. In: Structure and Infrastructure Engineering 8.4, pp. 341–356. doi: 10.1080/15732479.2011.563089. Friedenthal, S., A. Moore, and R. Steiner (2015). A practical guide to SysML: the systems modeling language. Morgan Kaufmann. doi: 10.1016/C2013-0-14457-1. Goebel, K., J. Celaya, S. Sankararaman, I. Roychoudhury, M. Daigle, and A. Saxena (Apr. 2017). Prognostics: The Science of Making Predictions. isbn: 978-1539074830. Goyal, D., B. Pabla, S. Dhami, and K. Lachhwani (2017). “Optimization of conditionbased maintenance using soft computing”. In: Neural Computing and Applications 28, pp. 829–844. doi: 10.1007/s00521-016-2377-6. Guler, H. (Dec. 2016). “Optimisation of railway track maintenance and renewal works by genetic algorithms”. In: Journal of the Croatian Association of Civil Engineers 68, pp. 979–993. doi: 10.14256/JCE.1458.2015. Guo, J., Z. Li, and M. Li (2020). “A Review on Prognostics Methods for Engineering Systems”. In: IEEE Transactions on Reliability 69.3, pp. 1110–1129. doi: 10.1109/TR. 2019.2957965. Hawari, A., F. Alkadour, M. Elmasry, and T. Zayed (2020). “A state of the art review on condition assessment models developed for sewer pipelines”. In: Engineering Applications of Artificial Intelligence 93, p. 103721. doi: 10.1016/j.engappai.2020.103721. Heng, A., S. Zhang, A. C. Tan, and J. Mathew (2009). “Rotating machinery prognostics: State of the art, challenges and opportunities”. In: Mechanical Systems and Signal Processing 23.3, pp. 724–739. issn: 0888-3270. doi: 10.1016/j.ymssp.2008.06.009. Hensel, C., S. Junges, J. Katoen, T. Quatmann, and M. Volk (2022). “The probabilistic model checker Storm”. In: International Journal on Software Tools for Technology Transfer 24.4, pp. 589–610. doi: 10.1007/s10009-021-00633-z. Hu, Y., X. Miao, Y. Si, E. Pan, and E. Zio (2022). “Prognostics and health management: A review from the perspectives of design, development and decision”. In: Reliability Engineering & System Safety 217, p. 108063. issn: 0951-8320. doi: 10.1016/j.ress. 2021.108063. Hunt, A., B. E. Kelly, J. S. Mullhi, F. P. Lees, and A. G. Rushton (1993). “The propagation of faults in process plants: 6, Overview of, and modelling for, fault tree synthesis”. In: Reliability Engineering & System Safety 39 (2), pp. 173–194. doi: 10.1016/09518320(93)90041-V. IEC 60050-192:2015 - International Electrotechnical Vocabulary - Part 192: Dependability, Definition 192-01-24 (2015). Available at https://www.electropedia.org/iev/ iev.nsf/display?openform&ievref=192-01-24. Accessed: 2024-06-10. International Electrotechnical Commission.

RkJQdWJsaXNoZXIy MjY0ODMw