668430-Roa

7.9. References 173 M.A. Cardoso, M. A. and M. S. Silva (2016). “Sewer asset management planning – implementation of a structured approach in wastewater utilities”. In: Urban Water Journal 13.1, pp. 15–27. doi: 10.1080/1573062X.2015.1076859. Marugán, A. P. (2023). “Applications of Reinforcement Learning for maintenance of engineering systems: A review”. In: Advances in Engineering Software 183, p. 103487. issn: 0965-9978. doi: 10.1016/j.advengsoft.2023.103487. Ogunfowora, O. and H. Najjaran (2023). “Reinforcement and deep reinforcement learningbased solutions for machine maintenance planning, scheduling policies, and optimization”. In: Journal of Manufacturing Systems 70, pp. 244–263. issn: 0278-6125. doi: 10.1016/j.jmsy.2023.07.014. Ra’n, A., A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann (2021). “StableBaselines3: Reliable Reinforcement Learning Implementations”. In: Journal of Machine Learning Research 22.268, pp. 1–8. url: http://jmlr.org/papers/v22/20-1364.html. Tscheikner-Gratl, F., N. Caradot, F. Cherqui, J. P. Leitão, M. Ahmadi, J. G. Langeveld, Y. Le Gat, L. Scholten, B. Roghani, J. P. Rodríguez, et al. (2019). “Sewer asset management–state of the art and research needs”. In: Urban Water Journal 16.9, pp. 662–675. doi: 10.1080/1573062X.2020.1713382. Turnbull, B. W. (1976). “The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data”. In: Journal of the Royal Statistical Society: Series B (Methodological) 38.3, pp. 290–295. doi: https://doi.org/10.1111/j.25176161.1976.tb01597.x. Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, *. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In: Nature Methods 17, pp. 261–272. doi: 10.1038/s41592-019-0686-2.

RkJQdWJsaXNoZXIy MjY0ODMw