152 Part III: Maintenance optimisation of multi-state components and sewer networks”. In: Reliability Engineering & System Safety 219, p. 108248. issn: 0951-8320. doi: https://doi.org/10.1016/j.ress.2021.108248. Real Torres, A. del, D. S. Andreiana, Á. Ojeda Roldán, A. Hernández Bustos, and L. E. Acevedo Galicia (2022). “A Review of Deep Reinforcement Learning Approaches for Smart Manufacturing in Industry 4.0 and 5.0 Framework”. In: Applied Sciences 12.23. issn: 2076-3417. doi: 10.3390/app122312377. Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017). “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347. doi: 10.48550/ arXiv.1707.06347. Stable-Baselines3 Contributors (2024). PPO - Proximal Policy Optimization. https: //stable- baselines3.readthedocs.io/en/master/modules/ppo.html. Accessed: 2024-08-28. Tian, W., G. Fu, K. Xin, Z. Zhang, and Z. Liao (2024). “Improving the interpretability of deep reinforcement learning in urban drainage system operation”. In: Water Research 249, p. 120912. issn: 0043-1354. doi: https://doi.org/10.1016/j.watres.2023. 120912. Tian, W., Z. Liao, G. Zhi, Z. Zhang, and X. Wang (2022). “Combined Sewer Overflow and Flooding Mitigation Through a Reliable Real-Time Control Based on MultiReinforcement Learning and Model Predictive Control”. In: Water Resources Research 58.7. e2021WR030703 2021WR030703, e2021WR030703. doi: https://doi.org/10. 1029/2021WR030703. “Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices” (2007). In: European Journal of Operational Research 181.1, pp. 338–349. issn: 0377-2217. doi: 10.1016/j.ejor.2006.06.019. Wang, X., S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and Q. Miao (2024). “Deep Reinforcement Learning: A Survey”. In: IEEE Transactions on Neural Networks and Learning Systems 35.4, pp. 5064–5078. doi: 10.1109/TNNLS.2022.3207346. Wirahadikusumah, R. and D. M. Abraham (2003). “Application of dynamic programming and simulation for sewer management”. In: Engineering, Construction and Architectural Management 10.3, pp. 193–208. doi: 10.1108/09699980310478449. Wirahadikusumah, R., D. M. Abraham, and J. Castello (1999). “Markov decision process for sewer rehabilitation”. In: Engineering, Construction and Architectural Management 6.4, pp. 358–370. doi: 10.1108/eb021124. Yang, M.-D. and T.-C. Su (2007). “An optimization model of sewage rehabilitation”. In: Journal of the Chinese Institute of Engineers 30.4, pp. 651–659. doi: 10.1080/ 02533839.2007.9671292. Yao, L., Q. Dong, J. Jiang, and F. Ni (2020). “Deep reinforcement learning for longterm pavement maintenance planning”. In: Computer-Aided Civil and Infrastructure Engineering 35.11, pp. 1230–1245. doi: https://doi.org/10.1111/mice.12558. Yin, Z., A. S. Leon, A. Sharifi, and M. H. Amini (n.d.). “Optimal Control of Combined Sewer Systems to Minimize Sewer Overflows by Using Reinforcement Learning”. In: World Environmental and Water Resources Congress 2023, pp. 711–722. doi: 10.1061/ 9780784484852.067. Zhang, Z., W. Tian, and Z. Liao (2023). “Towards coordinated and robust real-time control: a decentralized approach for combined sewer overflow and urban flooding reduction based on multi-agent reinforcement learning”. In: Water Research 229, p. 119498. issn: 0043-1354. doi: https://doi.org/10.1016/j.watres.2022.119498.
RkJQdWJsaXNoZXIy MjY0ODMw