668430-Roa

III.4.4 Proximal Policy Optimisation 151 study for two settlements in Jordan and Oman”. In: Frontiers in Environmental Science 9, p. 626634. doi: 10.3389/fenvs.2021.626634. Laakso, T., T. Kokkonen, I. Mellin, and R. Vahala (2019). “Sewer Life Span Prediction: Comparison of Methods and Assessment of the Sample Impact on the Results”. In: Water 11.12. issn: 2073-4441. doi: 10.3390/w11122657. Lee, J., C. Y. Park, S. Baek, S. H. Han, and S. Yun (2021). “Risk-Based Prioritization of Sewer Pipe Inspection from Infrastructure Asset Management Perspective”. In: Sustainability 13.13. issn: 2071-1050. doi: 10.3390/su13137213. Li, C., P. Zheng, Y. Yin, B. Wang, and L. Wang (2023). “Deep reinforcement learning in smart manufacturing: A review and prospects”. In: CIRP Journal of Manufacturing Science and Technology 40, pp. 75–101. issn: 1755-5817. doi: https://doi.org/10. 1016/j.cirpj.2022.11.003. Lin, P., X.-X. Yuan, and E. Tovilla (2019). “Integrative modeling of performance deterioration and maintenance e!ectiveness for infrastructure assets with missing condition data”. In: Computer-Aided Civil and Infrastructure Engineering 34.8, pp. 677–695. doi: 10.1111/mice.12452. M.A. Cardoso, M. A. and M. S. Silva (2016). “Sewer asset management planning – implementation of a structured approach in wastewater utilities”. In: Urban Water Journal 13.1, pp. 15–27. doi: 10.1080/1573062X.2015.1076859. Marc Ribalta Ramon Bejar, C. M. and E. Rubión (2023). “Machine learning solutions in sewer systems: a bibliometric analysis”. In: Urban Water Journal 20.1, pp. 1–14. doi: 10.1080/1573062X.2022.2138460. Marugán, A. P. (2023). “Applications of Reinforcement Learning for maintenance of engineering systems: A review”. In: Advances in Engineering Software 183, p. 103487. issn: 0965-9978. doi: 10.1016/j.advengsoft.2023.103487. Marzouk, M. and M. Ibrahim (Nov. 2013). “Multiobjective optimisation algorithm for sewer network rehabilitation”. In: Structure and Infrastructure Engineering 9, pp. 1094– 1102. doi: 10.1080/15732479.2012.666254. Montserrat, A., L. Bosch, M. Kiser, M. Poch, and L. Corominas (2015). “Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems”. In: Science of The Total Environment 505, pp. 1053–1061. issn: 0048-9697. doi: https://doi.org/10.1016/j.scitotenv.2014.10.087. Mullapudi, A., M. J. Lewis, C. L. Gruden, and B. Kerkez (2020). “Deep reinforcement learning for the real time control of stormwater systems”. In: Advances in Water Resources 140, p. 103600. issn: 0309-1708. doi: 10.1016/j.advwatres.2020.103600. Obradovi#, D., M. $perac, and S. Marenjak (2019). “Possibilities of using expert methods for sewer system maintenance optimisation”. In: Gra!evinar 71.9, pp. 769–779. doi: 10.14256/JCE.2589.2018. Ogunfowora, O. and H. Najjaran (2023). “Reinforcement and deep reinforcement learningbased solutions for machine maintenance planning, scheduling policies, and optimization”. In: Journal of Manufacturing Systems 70, pp. 244–263. issn: 0278-6125. doi: 10.1016/j.jmsy.2023.07.014. Puterman, M. L. (1990). “Markov decision processes”. In: Handbooks in Operations Research and Management Science 2, pp. 331–434. doi: 10.1016/S0927- 0507(05) 80172-0. Qasem, A. and R. Jamil (2021). “GIS-Based Financial Analysis Model for Integrated Maintenance and Rehabilitation of Underground Pipe Networks”. In: Journal of Performance of Constructed Facilities 35.5, p. 04021046. doi: 10.1061/(ASCE)CF.19435509.0001623. Ramos-Salgado, C., J. Muñuzuri, P. Aparicio-Ruiz, and L. Onieva (2022). “A comprehensive framework to e’ciently plan short and long-term investments in water supply

RkJQdWJsaXNoZXIy MjY0ODMw