III.4.4 Proximal Policy Optimisation 149 convergence. For details on PPO’s implementation see the documentation in (PPO:SB3). References Abraham, D. M., R. Wirahadikusumah, T. J. Short, and S. Shahbahrami (1998). “Optimization Modeling for Sewer Network Management”. In: Journal of Construction Engineering and Management 124.5, pp. 402–410. doi: 10.1061/(ASCE)0733-9364(1998) 124:5(402). Ana, E. and W. Bauwens (2007). “Sewer network asset management decision-support tools: a review”. In: International Symposium on New Directions in Urban Water Management. Vol. 12. 14, pp. 1–8. Arthur, S. and H. Crow (2007). “Prioritising sewerage maintenance using serviceability criteria”. In: Proceedings of the Institution of Civil Engineers - Water Management 160.3, pp. 189–194. doi: 10.1680/wama.2007.160.3.189. Arthur, S., H. Crow, L. Pedezert, and N. Karikas (Apr. 2009). “The holistic prioritisation of proactive sewer maintenance”. In: Water Science and Technology 59.7, pp. 1385–1396. issn: 0273-1223. doi: 10.2166/wst.2009.134. Arulkumaran, K., M. P. Deisenroth, M. Brundage, and A. A. Bharath (2017). “Deep Reinforcement Learning: A Brief Survey”. In: IEEE Signal Processing Magazine 34.6, pp. 26–38. doi: 10.1109/MSP.2017.2743240. Assaf, G. and R. H. Assaad (2023). “Optimal Preventive Maintenance, Repair, and Replacement Program for Catch Basins to Reduce Urban Flooding: Integrating AgentBased Modeling and Monte Carlo Simulation”. In: Sustainability 15.11. issn: 2071-1050. doi: 10.3390/su15118527. Baah, K., B. Dubey, R. Harvey, and E. McBean (2015). “A risk-based approach to sanitary sewer pipe asset management”. In: Science of The Total Environment 505, pp. 1011– 1017. issn: 0048-9697. doi: https://doi.org/10.1016/j.scitotenv.2014.10.040. Breysse, D., E. Vasconcelos, and F. Schoefs (2007). “Management Strategies and Improvement of Performance of Sewer Networks”. In: Computer-Aided Civil and Infrastructure Engineering 22.7, pp. 462–477. doi: 10.1111/j.1467-8667.2007.00503.x. Caradot, N., M. Riechel, M. Fesneau, N. Hernandez, A. Torres, H. Sonnenberg, E. Eckert, N. Lengemann, J. Waschnewski, and P. Rouault (2018). “Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany”. In: Journal of Hydroinformatics 20.5, pp. 1131–1147. doi: 10.2166/ hydro.2018.217. Caradot, N., P. R. Sampaio, A. Guilbert, H. Sonnenberg, V. Parez, and V. Dimova (2021). “Using deterioration modelling to simulate sewer rehabilitation strategy with low data availability”. In: Water Science and Technology 83.3, pp. 631–640. doi: 10.2166/wst.2020.604. Cheng, J. C. and M. Wang (2018). “Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques”. In: Automation in Construction 95, pp. 155–171. issn: 0926-5805. doi: 10.1016/j.autcon.2018.08.006. DeSilva, D., S. Burn, G. Tjandraatmadja, M. Moglia, P. Davis, L. Wolf, I. Held, J. Vollertsen, W. Williams, and L. Hafskjold (Feb. 2005). “Sustainable management of leakage from wastewater pipelines”. In: Water science and technology : a journal of the International Association on Water Pollution Research 52, pp. 189–98. doi: 10.2166/wst.2005.0459. Elmasry, M., T. Zayed, and A. Hawari (2019). “Multi-Objective Optimization Model for Inspection Scheduling of Sewer Pipelines”. In: Journal of Construction Engineering and Management 145.2, p. 04018129. doi: 10.1061/(ASCE)CO.1943-7862.0001599.
RkJQdWJsaXNoZXIy MjY0ODMw