668430-Roa

6.6. References 137 transition probabilities”. In: Computer-Aided Civil and Infrastructure Engineering 38.13, pp. 1730–1748. doi: 10.1111/mice.12976. Mohammadi, M. M., M. Najafi, S. Kermanshachi, V. Kaushal, and R. Serajiantehrani (2020). “Factors Influencing the Condition of Sewer Pipes: State-of-the-Art Review”. In: Journal of Pipeline Systems Engineering and Practice 11.4, p. 03120002. doi: 10.1061/(ASCE)PS.1949-1204.0000483. Salihu, C., M. Hussein, S. R. Mohandes, and T. Zayed (2022). “Towards a comprehensive review of the deterioration factors and modeling for sewer pipelines: A hybrid of bibliometric, scientometric, and meta-analysis approach”. In: Journal of Cleaner Production 351, p. 131460. issn: 0959-6526. doi: 10.1016/j.jclepro.2022.131460. Schwarz, G. (1978). “Estimating the Dimension of a Model”. In: The Annals of Statistics 6.2, pp. 461–464. issn: 00905364. url: https://www.jstor.org/stable/2958889. Tran, H., W. Lokuge, S. Setunge, and W. Karunasena (2022). “Network deterioration prediction for reinforced concrete pipe and box culverts using Markov model: Case study”. In: Journal of Performance of Constructed Facilities 36.6, p. 04022047. doi: 10.1061/(ASCE)CF.1943-5509.000176. Turnbull, B. W. (1976). “The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data”. In: Journal of the Royal Statistical Society: Series B (Methodological) 38.3, pp. 290–295. doi: https://doi.org/10.1111/j.25176161.1976.tb01597.x. Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, *. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In: Nature Methods 17, pp. 261–272. doi: 10.1038/s41592-019-0686-2.

RkJQdWJsaXNoZXIy MjY0ODMw