136 Chapter 6. Comparing Homogeneous and Inhomogeneous Time Markov Chains for Modelling Deterioration in Sewer Pipe Networks G. Kitagawa. New York, NY: Springer New York, pp. 199–213. isbn: 978-1-4612-1694-0. doi: 10.1007/978-1-4612-1694-0_15. Caradot, N., H. Sonnenberg, I. Kropp, A. Ringe, S. Denhez, A. Hartmann, and P. Rouault (2017). “The relevance of sewer deterioration modelling to support asset management strategies”. In: Urban Water Journal 14.10, pp. 1007–1015. doi: 10.1080/1573062X. 2017.1325497. Compare, M., P. Baraldi, I. Bani, E. Zio, and D. Mc Donnell (2017). “Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components”. In: Reliability Engineering & System Safety 166. Reliability and Performance of Multi-State Systems, pp. 25–40. issn: 0951-8320. doi: 10.1016/j.ress.2016.11.020. Davidson-Pilon, C. (2019). “lifelines: survival analysis in Python”. In: Journal of Open Source Software 4.40, p. 1317. doi: 10.21105/joss.01317. Duchesne, S., G. Beardsell, J.-P. Villeneuve, B. Toumbou, and K. Bouchard (2013). “A survival analysis model for sewer pipe structural deterioration”. In: ComputerAided Civil and Infrastructure Engineering 28.2, pp. 146–160. doi: 10.1111/j.14678667.2012.00773.x. Egger, C., A. Scheidegger, P. Reichert, and M. Maurer (2013). “Sewer deterioration modeling with condition data lacking historical records”. In: Water Research 47.17, pp. 6762–6779. issn: 0043-1354. doi: 10.1016/j.watres.2013.09.010. EN 13508:1 -Investigation and assessment of drain and sewer systems outside buildings - Part 1: General Requirements (Oct. 2012). Standard. Avenue Marnix 17, B-1000 Brussels: European Committee for Standardization (CEN). EN 13508:2 -Investigation and assessment of drain and sewer systems outside buildings - Part 2: Visual inspection coding system(May 2011). Standard. Avenue Marnix 17, B-1000 Brussels: European Committee for Standardization (CEN). Hastings, W. K. (Apr. 1970). “Monte Carlo sampling methods using Markov chains and their applications”. In: Biometrika 57.1, pp. 97–109. issn: 0006-3444. doi: 10.1093/ biomet/57.1.97. Hout, A. van den (2016). Multi-State Survival Models for Interval-Censored Data. CRC Press, pp. 1–238. isbn: 978-146656841-9. doi: 10.1201/9781315374321. Jason T. Rich, M., M. J. Gail Neely, M. Randal C. Paniello, M. D. Courtney C. J. Voelker, M. Brian Nussenbaum, and M. Eric W. Wang (2010). “A practical guide to understanding Kaplan-Meier curves”. In: Otolaryngology–Head and Neck Surgery 143.3, pp. 331– 336. doi: 10.1016/j.otohns.2010.05.007. Kleiner, Y. (2001). “Optimal scheduling of rehabilitation and inspection/condition assessment in large buried pipes”. In: NRCC-44487, 4th International Conference on Water Pipeline Systems—Managing Pipeline Assets in an Evolving Market, pp. 181–197. Kleiner, Y., R. Sadiq, and B. Rajani (2004). “Modeling failure risk in buried pipes using fuzzy Markov deterioration process”. In: Pipeline Engineering and Construction: What’s on the Horizon?, pp. 1–12. doi: 10.1061/40745(146)7. Lubini, A. T. and M. Fuamba (2011). “Modeling of the deterioration timeline of sewer systems”. In: Canadian Journal of Civil Engineering 38.12, pp. 1381–1390. doi: 10. 1139/l11-103. Marc Ribalta Ramon Bejar, C. M. and E. Rubión (2023). “Machine learning solutions in sewer systems: a bibliometric analysis”. In: Urban Water Journal 20.1, pp. 1–14. doi: 10.1080/1573062X.2022.2138460. Micevski, T., G. Kuczera, and P. Coombes (2002). “Markov Model for Storm Water Pipe Deterioration”. In: Journal of Infrastructure Systems 8.2, pp. 49–56. doi: 10.1061/ (ASCE)1076-0342(2002)8:2(49). Mizutani, D. and X.-X. Yuan (2023). “Infrastructure deterioration modeling with an inhomogeneous continuous time Markov chain: A latent state approach with analytic
RkJQdWJsaXNoZXIy MjY0ODMw