II.5 References 109 In: BMC Medical Research Methodology 23.1, p. 51. doi: 10.1186/s12874-023-01866z. Khaleghian, H. and Y. Shan (2023). “Developing a Data Quality Evaluation Framework for Sewer Inspection Data”. In: Water 15.11. issn: 2073-4441. doi: 10.3390/w15112043. Kleiner, Y. (2001). “Optimal scheduling of rehabilitation and inspection/condition assessment in large buried pipes”. In: NRCC-44487, 4th International Conference on Water Pipeline Systems—Managing Pipeline Assets in an Evolving Market, pp. 181–197. Le Gat, Y. (2008). “Modelling the deterioration process of drainage pipelines”. In: Urban Water Journal 5.2, pp. 97–106. doi: 10.1080/15730620801939398. Lin, P., X.-X. Yuan, and E. Tovilla (2019). “Integrative modeling of performance deterioration and maintenance e!ectiveness for infrastructure assets with missing condition data”. In: Computer-Aided Civil and Infrastructure Engineering 34.8, pp. 677–695. doi: 10.1111/mice.12452. Lubini, A. T. and M. Fuamba (2011). “Modeling of the deterioration timeline of sewer systems”. In: Canadian Journal of Civil Engineering 38.12, pp. 1381–1390. doi: 10. 1139/l11-103. Malek Mohammadi, M., M. Najafi, V. Kaushal, R. Serajiantehrani, N. Salehabadi, and T. Ashoori (2019). “Sewer pipes condition prediction models: A state-of-the-art review”. In: Infrastructures 4.4, p. 64. doi: 10.3390/infrastructures4040064. Marc Ribalta Ramon Bejar, C. M. and E. Rubión (2023). “Machine learning solutions in sewer systems: a bibliometric analysis”. In: Urban Water Journal 20.1, pp. 1–14. doi: 10.1080/1573062X.2022.2138460. Micevski, T., G. Kuczera, and P. Coombes (2002). “Markov Model for Storm Water Pipe Deterioration”. In: Journal of Infrastructure Systems 8.2, pp. 49–56. doi: 10.1061/ (ASCE)1076-0342(2002)8:2(49). Nguyen, L. V. and R. Seidu (2022). “Application of Regression-Based Machine Learning Algorithms in Sewer Condition Assessment for Ålesund City, Norway”. In: Water 14.24, p. 3993. doi: 10.3390/w14243993. Noshahri, H., L. L. olde Scholtenhuis, A. G. Doree, and E. C. Dertien (2021). “Linking sewer condition assessment methods to asset managers’ data-needs”. In: Automation in Construction 131, p. 103878. issn: 0926-5805. doi: 10.1016/j.autcon.2021.103878. Rokstad, M. M. and R. M. Ugarelli (Apr. 2015). “Evaluating the role of deterioration models for condition assessment of sewers”. In: Journal of Hydroinformatics 17.5, pp. 789–804. issn: 1464-7141. doi: 10.2166/hydro.2015.122. Saddiqi, M. M., W. Zhao, S. Cotterill, and R. K. Dereli (2023). “Smart management of combined sewer overflows: From an ancient technology to artificial intelligence”. In: Wiley Interdisciplinary Reviews: Water 10.3, e1635. doi: 10.1002/wat2.1635. Scheidegger, A., T. Hug, J. Rieckermann, and M. Maurer (2011). “Network condition simulator for benchmarking sewer deterioration models”. In: Water Research 45.16, pp. 4983–4994. issn: 0043-1354. doi: 10.1016/j.watres.2011.07.008. Stewart, W. J. (2009). Probability, Markov chains, queues, and simulation: the mathematical basis of performance modeling. Princeton University Press. Chap. 9. Discrete- and Continuous-Time Markov chains, pp. 193–284. isbn: 9780691140629. doi: 10.2307/j. ctvcm4gtc.12. Timashev, S. and A. Bushinskaya (2015). “Markov approach to early diagnostics, reliability assessment, residual life and optimal maintenance of pipeline systems”. In: Structural Safety 56, pp. 68–79. issn: 0167-4730. doi: 10.1016/j.strusafe.2015.05.006. Tran, H., W. Lokuge, W. Karunasena, and S. Setunge (2022). “Markov-based deterioration prediction and asset management of floodway structures”. In: Sustainable and Resilient Infrastructure 7.6, pp. 789–802. doi: 10.1080/23789689.2022.2067950. Tran, H., W. Lokuge, S. Setunge, and W. Karunasena (2022). “Network deterioration prediction for reinforced concrete pipe and box culverts using Markov model: Case
RkJQdWJsaXNoZXIy MjY0ODMw