108 Part II: Multi-state deterioration modelling strategies”. In: Urban Water Journal 14.10, pp. 1007–1015. doi: 10.1080/1573062X. 2017.1325497. Cherqui, F., F. Clemens-Meyer, F. Tscheikner-Gratl, and B. van Duin (June 2024). Asset Management of Urban Drainage Systems: If anything exciting happens, we’ve done it wrong! IWA Publishing. isbn: 9781789063059. doi: 10.2166/9781789063059. Colombo, D., D. T. Abreu, and M. R. Martins (2021). “Application of Markovian models in reliability and availability analysis: advanced topics”. In: Safety and Reliability Modeling and its Applications. Ed. by H. Pham and M. Ram. Advances in Reliability Science. Elsevier, pp. 91–160. isbn: 978-0-12-823323-8. doi: 10.1016/B978-0-12823323-8.00015-5. Dirksen, J. and F. Clemens (2008). “Probabilistic modeling of sewer deterioration using inspection data”. In: Water Science and Technology 57.10, pp. 1635–1641. doi: 10. 2166/wst.2008.308. Duchesne, S., G. Beardsell, J.-P. Villeneuve, B. Toumbou, and K. Bouchard (2013). “A survival analysis model for sewer pipe structural deterioration”. In: ComputerAided Civil and Infrastructure Engineering 28.2, pp. 146–160. doi: 10.1111/j.14678667.2012.00773.x. Egger, C., A. Scheidegger, P. Reichert, and M. Maurer (2013). “Sewer deterioration modeling with condition data lacking historical records”. In: Water Research 47.17, pp. 6762–6779. issn: 0043-1354. doi: 10.1016/j.watres.2013.09.010. El Morer, F., S. Wittek, and A. Rausch (2024). “Assessment of the suitability of degradation models for the planning of CCTV inspections of sewer pipes”. In: Urban Water Journal 21.2, pp. 190–203. doi: 10.1080/1573062X.2023.2282126. EN 13508:1 -Investigation and assessment of drain and sewer systems outside buildings - Part 1: General Requirements (Oct. 2012). Standard. Avenue Marnix 17, B-1000 Brussels: European Committee for Standardization (CEN). EN 13508:2 -Investigation and assessment of drain and sewer systems outside buildings - Part 2: Visual inspection coding system(May 2011). Standard. Avenue Marnix 17, B-1000 Brussels: European Committee for Standardization (CEN). Haurum, J. B. and T. B. Moeslund (2021). “Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark”. In: CoRRabs/2103.10895, pp. 13456–13467. url: https://arxiv.org/abs/2103.10895. Hawari, A., F. Alkadour, M. Elmasry, and T. Zayed (2020). “A state of the art review on condition assessment models developed for sewer pipelines”. In: Engineering Applications of Artificial Intelligence 93, p. 103721. doi: 10.1016/j.engappai.2020.103721. Hernández, N., N. Caradot, H. Sonnenberg, P. Rouault, and A. Torres (2021). “Optimizing SVM models as predicting tools for sewer pipes conditions in the two main cities in Colombia for di!erent sewer asset management purposes”. In: Structure and Infrastructure Engineering 17.2, pp. 156–169. doi: 10.1080/15732479.2020.1733029. Jimenez-Roa, L. A., T. Heskes, T. Tinga, H. J. A. Molegraaf, and M. Stoelinga (2022). “Deterioration modeling of sewer pipes via discrete-time Markov chains: A largescale case study in the Netherlands”. In: Proceedings of the 32nd European Safety and Reliability Conference, ESREL 2022 - Understanding and Managing Risk and Reliability for a Sustainable Future, pp. 1299–1306. doi: 10.3850/978-981-18-5183-4_R22-13482-cd. Jimenez-Roa, L. A., T. Tinga, T. Heskes, and M. Stoelinga (2024). “Comparing Homogeneous and Inhomogeneous Time Markov Chains for Modelling Degradation in Sewer Pipe Networks”. In: Proceedings of the European Safety and Reliability Conference (ESREL 2024). doi: 10.48550/arXiv.2407.12557. Kantidakis, G., H. Putter, S. Litière, and M. Fiocco (2023). “Statistical models versus machine learning for competing risks: development and validation of prognostic models”.
RkJQdWJsaXNoZXIy MjY0ODMw