92 Chapter 4. Fault Tree inference using Multi-Objective Evolutionary Algorithms and Confusion Matrix-based metrics Mentes, A. and I. H. Helvacioglu (2011). “An application of fuzzy fault tree analysis for spread mooring systems”. In: Ocean Engineering 38 (2-3), pp. 285–294. doi: 10.1016/ j.oceaneng.2010.11.003. NASA (2002). Fault Tree Handbook with Aerospace Applications. Handbook. U.S. National Aeronautics and Space Administration. Nauta, M., D. Bucur, and M. Stoelinga (2018). “LIFT: Learning fault trees from observational data”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11024 LNCS, pp. 306–322. doi: 10.1007/978-3-319-99154-2_19. Niloofar, P. and S. Lazarova-Molnar (2023). “Data-driven extraction and analysis of repairable fault trees from time series data”. In: Expert Systems with Applications 215, p. 119345. issn: 0957-4174. doi: 10.1016/j.eswa.2022.119345. OpenAI et al. (2024). GPT-4 Technical Report. doi: 10.48550/ARXIV.2303.08774. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning Research 12.85, pp. 2825–2830. url: http://jmlr.org/papers/v12/pedregosa11a.html. Ruijters, E. and M. Stoelinga (2015). “Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools”. In: Computer Science Review 15-16, pp. 29–62. issn: 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2015.03.001. Sokolova, M. and G. Lapalme (2009). “A systematic analysis of performance measures for classification tasks”. In: Information Processing & Management 45.4, pp. 427–437. issn: 0306-4573. doi: 10.1016/j.ipm.2009.03.002. Taskesen, E. (Oct. 2020). PCA: A Python Package for Principal Component Analysis. Version 1.8.4. url: https://erdogant.github.io/pca. Waghen, K. and M.-S. Ouali (2019). “Interpretable logic tree analysis: A data-driven fault tree methodology for causality analysis”. In: Expert Systems with Applications 136, pp. 376–391. doi: 10.1016/j.eswa.2019.06.042.
RkJQdWJsaXNoZXIy MjY0ODMw