3 3.6. References 73 inference back-end can be improved by either optimising FT-MOEA or developing new inference approaches. We also plan to relax restrictions on the input data. In the current approach, the resulting FTs are only as good as the given input data, which may be incomplete, e.g., due to rare events not present in the data. Moreover, the input may not completely represent the reality due to noise in the data. Hence, we aim to extend our approach to account for missing information and noise. 3.6 References Brayton, R. K., G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli (1984). Logic Minimization Algorithms for VLSI Synthesis. Vol. 2. The Kluwer International Series in Engineering and Computer Science. Springer. doi: 10.1007/978-1-46132821-6. Byun, J.-E. and J. Song (2020). “E’cient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network”. In: Reliability Engineering & System Safety 200, p. 106899. doi: 10.1016/j.ress.2020.106899. Carpignano, A. and A. Poucet (1994). “Computer assisted fault tree construction: a review of methods and concerns”. In: Reliability Engineering & System Safety 44.3, pp. 265–278. doi: 10.1016/0951-8320(94)90018-3. De Vries, R. C. (1990). “An automated methodology for generating a fault tree”. In: IEEE Transactions on Reliability 39.1, pp. 76–86. doi: 10.1109/24.52615. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002). “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary Computation 6 (2), pp. 182–197. doi: 10.1109/4235.996017. Dutuit, Y. and A. Rauzy (1996). “A linear-time algorithm to find modules of fault trees”. In: IEEE Transactions on Reliability 45.3, pp. 422–425. doi: 10.1109/24.537011. Hunt, A., B. E. Kelly, J. S. Mullhi, F. P. Lees, and A. G. Rushton (1993). “The propagation of faults in process plants: 6, Overview of, and modelling for, fault tree synthesis”. In: Reliability Engineering & System Safety 39 (2), pp. 173–194. doi: 10.1016/09518320(93)90041-V. Jimenez-Roa, L. A., T. Heskes, T. Tinga, and M. Stoelinga (2023). “Automatic Inference of Fault Tree Models Via Multi-Objective Evolutionary Algorithms”. In: IEEE Transactions on Dependable and Secure Computing 20.4, pp. 3317–3327. doi: 10.1109/TDSC. 2022.3203805. Joshi, A., S. Vestal, and P. Binns (2007). “Automatic generation of static fault trees from AADL models”. In: url: https://hdl.handle.net/11299/217313. Lapp, S. A. and G. J. Powers (1977). “Computer-aided synthesis of fault-trees”. In: IEEE Transactions on Reliability 26 (1). doi: 10.1109/TR.1977.5215060. Lazarova-Molnar, S., P. Niloofar, and G. K. Barta (2020). “Data-Driven Fault Tree Modeling for Reliability Assessment of Cyber-Physical Systems”. In: 2020 Winter Simulation Conference (WSC), pp. 2719–2730. doi: 10.1109/WSC48552.2020.9383882. Linard, A., M. Bueno, D. Bucur, and M. Stoelinga (2020). “Induction of fault trees through Bayesian networks”. In: Proceedings of the 29th European Safety and Reliability Conference, ESREL 2019, pp. 910–917. doi: 10.3850/978-981-11-2724-3_0596-cd. Linard, A., D. Bucur, and M. Stoelinga (2019). “Fault Trees from Data: E’cient Learning with an Evolutionary Algorithm”. In: International Symposium on Dependable Software Engineering: Theories, Tools, and Applications. Vol. 11951 LNCS, pp. 19–37. doi: 10.1007/978-3-030-35540-1_2.
RkJQdWJsaXNoZXIy MjY0ODMw