126 Chapter 5 REFERENCES 1. Jack Jr, C.R., et al., NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 2018. 14(4): p. 535-562. 2. Koedam, E.L., et al., Early-versus late-onset Alzheimer’s disease: more than age alone. Journal of Alzheimer’s Disease, 2010. 19(4): p. 1401-1408. 3. Koedam, E.L., et al., Early-onset dementia is associated with higher mortality. Dementia and geriatric cognitive disorders, 2008. 26(2): p. 147-152. 4. Koss, E., et al., Clinical and neuropsychological differences between patients with earlier and later onset of Alzheimer’s disease: A CERAD analysis, Part XII. Neurology, 1996. 46(1): p. 136-141. 5. Scheltens, N.M., et al., The identification of cognitive subtypes in Alzheimer’s disease dementia using latent class analysis. Journal of Neurology, Neurosurgery & Psychiatry, 2016. 87(3): p. 235-243. 6. Smits, L.L., et al., Early onset Alzheimer’s disease is associated with a distinct neuropsychological profile. Journal of Alzheimer’s Disease, 2012. 30(1): p. 101-108. 7. Ossenkoppele, R., et al., Amyloid burden and metabolic function in early-onset Alzheimer’s disease: parietal lobe involvement. Brain, 2012. 135(7): p. 2115-2125. 8. Smits, L.L., et al., Regional atrophy is associated with impairment in distinct cognitive domains in Alzheimer’s disease. Alzheimer’s & Dementia, 2014. 10: p. S299-S305. 9. Hsu, J.-L., et al., Posterior atrophy and medial temporal atrophy scores are associated with different symptoms in patients with Alzheimer’s disease and mild cognitive impairment. PloS one, 2015. 10(9): p. e0137121. 10. Whitwell, J.L., et al., Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. The Lancet Neurology, 2012. 11(10): p. 868-877. 11. Pontecorvo, M.J., et al., Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain, 2017. 140(3): p. 748-763. 12. Aschenbrenner, A.J., et al., Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology, 2018. 91(9): p. e859-e866. 13. Johnson, K.A., et al., Tau positron emission tomographic imaging in aging and early A lzheimer disease. Annals of neurology, 2016. 79(1): p. 110-119. 14. Ossenkoppele, R., et al., Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain, 2016. 139(5): p. 1551-1567. 15. Ossenkoppele, R., et al., Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease. Neurology, 2019. 92(6): p. e601-e612. 16. Schöll, M., et al., PET imaging of tau deposition in the aging human brain. Neuron, 2016. 89(5): p. 971-982. 17. Visser, D., et al., Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer’s disease. European journal of nuclear medicine and molecular imaging, 2020. 47: p. 3165-3175.
RkJQdWJsaXNoZXIy MjY0ODMw