89 DNA methylation testing for endometrial cancer detection in patient-friendly sample types Table 3: Diagnostic performance of the nine individual methylation markers (univariable logistic regression) and optimal three-marker panels (multivariable logistic regression) for endometrial cancer detection in the different sample types. Urine ADCYAP1 BHLHE22 CDH13 CDO1 GALR1 GHSR HAND2 SST ZIC1 CDH13+GHSR+SST AUC (non-CV; 95%-CI) 0.83 (0.77-0.88) 0.85 (0.79-0.90) 0.90 (0.85-0.94) 0.90 (0.86-0.94) 0.79 (0.73-0.86) 0.93 (0.90-0.97) 0.71 (0.64-0.78) 0.61 (0.53-0.69) 0.78 (0.71-0.84) 0.95 (0.92-0.98) Sens (%) 62 66 80 85 63 87 47 34 54 90 Spec (%) 93 98 92 84 86 87 91 93 95 90 AUC (LOOCV) 0.81 0.84 0.89 0.90 0.78 0.93 0.69 0.58 0.76 0.93 Self-sample ADCYAP1 BHLHE22 CDH13 CDO1 GALR1 GHSR HAND2 SST ZIC1 CDO1+GHSR+ZIC1 AUC (non-CV; 95%-CI) 0.68 (0.61-0.76) 0.76 (0.70-0.89) 0.69 (0.62-0.77) 0.91 (0.87-0.95) 0.70 (0.63-0.77) 0.85 (0.80-0.91) 0.65 (0.57-0.73) 0.62 (0.54-0.70) 0.62 (0.54-0.69) 0.94 (0.90-0.97) Sens (%) 47 60 45 78 44 75 46 28 39 89 Spec (%) 93 89 93 94 95 87 88 95 85 92 AUC (LOOCV) 0.65 0.76 0.68 0.91 0.69 0.84 0.63 0.60 0.58 0.92 Scrape ADCYAP1 BHLHE22 CDH13 CDO1 GALR1 GHSR HAND2 SST ZIC1 CDH13+CDO1+ZIC1 AUC (non-CV; 95%-CI) 0.79 (0.73-0.85) 0.84 (0.79-0.90) 0.68 (0.60-0.75) 0.96 (0.94-0.98) 0.63 (0.55-0.71) 0.91 (0.87-0.95) 0.62 (0.54-0.70) 0.74 (0.67-0.80) 0.78 (0.71-0.84) 0.97 (0.96-0.99) Sens (%) 57 73 48 87 42 79 44 64 79 93 Spec (%) 91 85 90 92 88 93 86 75 67 90 AUC (LOOCV) 0.79 0.84 0.66 0.96 0.61 0.90 0.60 0.73 0.77 0.97 Individual methylation markers and marker panels with the highest AUC value per sample type are depicted in bold. AUCs, including 95% Cl, are reported together with sensitivities and specificities based on the maximal Youden’s Index (J) threshold. LOOCV AUC values are reported without sensitivity and specificity. AUC = area under the receiver operating characteristic curve; CI = confidence interval; LOOCV = leave-one-out cross-validated; non-CV = non-cross-validated; Sens = sensitivity; Spec = specificity. 4
RkJQdWJsaXNoZXIy MjY0ODMw