Thesis

2 47 MACHINE LEARNING ENABLED PERSONALIZED PHYSICAL ACTIVITY COACHING a 3-month workplace-based pedometer-driven walking programme on health-related quality of life in meat processing workers: A feasibility study within a randomized controlled trial,” BMC Public Health, vol. 15, no. 1, 2015, doi: 10.1186/s12889-015-1736-z. [28] Z. H. Lewis, E. J. Lyons, J. M. Jarvis, and J. Baillargeon, “Using an electronic activity monitor system as an intervention modality: A systematic review.,” BMC Public Health, vol. 15, p. 585, Jun. 2015, doi: 10.1186/ s12889-015-1947-3. [29] R. Freak-poli, M. Cumpston, A. Peeters, and S. Clemes, “Workplace pedometer interventions for increasing physical activity ( Review ),” Cochrane database Syst. Rev., vol. 4, no. 4, p. CD009209, 2013, doi: 10.1002/14651858.CD009209.pub2.www.cochranelibrary.com. [30] S. Compernolle, C. Vandelanotte, G. Cardon, I. De Bourdeaudhuij, and K. De Cocker, “Effectiveness of a web-based, computer-tailored, pedometer-based physical activity intervention for adults: a cluster randomized controlled trial.,” J. Med. Internet Res., vol. 17, no. 2, p. e38, Feb. 2015, doi: 10.2196/ jmir.3402. [31] S. M. Slootmaker, M. J. M. Chinapaw, A. J. Schuit, J. C. Seidell, and W. Van Mechelen, “Feasibility and Effectiveness of Online Physical Activity Advice Based on a Personal Activity Monitor: Randomized Controlled Trial,” J. Med. Internet Res., vol. 11, no. 3, p. e27, Jul. 2009, doi: 10.2196/jmir.1139. [32] J. Poirier et al., “Effectiveness of an Activity Tracker- and Internet-Based Adaptive Walking Program for Adults: A Randomized Controlled Trial,” J. Med. Internet Res., vol. 18, no. 2, p. e34, Feb. 2016, doi: 10.2196/jmir.5295. [33] E. A. Finkelstein et al., “Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial,” Lancet Diabetes Endocrinol., vol. 4, no. 12, pp. 983–995, Dec. 2016, doi: 10.1016/S2213-8587(16)30284-4. [34] L. Mamykina et al., “Fish’n’Steps: Encouraging Physical Activity with an Interactive Computer Game,” in Ubicomp 2006:Ubiquitous Computing, 2006, vol. 4206, no. August 2015, doi: 10.1007/11853565. [35] T. Toscos, A. Faber, K. Connelly, and A. M. Upoma, “Encouraging physical activity in teens. Can technology help reduce barriers to physical activity in adolescent girls?,” in Pervasive Computing Technologies for Healthcare, 2008. PervasiveHealth 2008, 2008, vol. 3, no. Group 3, pp. 218–221. [36] J. Wang, R. Chen, X. Sun, M. F. H. She, and Y. Wu, “Recognizing human daily activities from accelerometer signal,” Procedia Eng., vol. 15, pp. 1780–1786, 2011, doi: 10.1016/j.proeng.2011.08.331. [37] X. Li et al., “Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information,” PLOS Biol., vol. 15, no. 1, p. e2001402, 2017, doi: 10.1371/journal. pbio.2001402. [38] C. Catal, S. Tufekci, E. Pirmit, and G. Kocabag, “On the use of ensemble of classifiers for accelerometerbased activity recognition,” Appl. Soft Comput. J., vol. 37, pp. 1018–1022, 2015, doi: 10.1016/j. asoc.2015.01.025. [39] Z. Sedighi Maman, M. A. Alamdar Yazdi, L. A. Cavuoto, and F. M. Megahed, “A data-driven approach to modeling physical fatigue in the workplace using wearable sensors,” Appl. Ergon., vol. 65, pp. 515–529, 2017, doi: 10.1016/j.apergo.2017.02.001. [40] J. S. Mollee, A. Middelweerd, S. J. Te Velde, and M. C. A. Klein, “Evaluation of a personalized coaching system for physical activity: user appreciation and adherence,” Accessed: Jan. 10, 2018. [Online].

RkJQdWJsaXNoZXIy MjY0ODMw