1 23 GENERAL INTRODUCTION EDE.0000000000000078. [50] J. Pearl and D. Mackenzie, The Book of Why. New York: Basic Books, 2018. [51] C. Lago, L. Casais, E. Dominguez, and J. Sampaio, “The effects of situational variables on distance covered at various speeds in elite soccer,” Eur. J. Sport Sci., vol. 10, no. 2, pp. 103–109, 2010, doi: 10.1080/17461390903273994. [52] J. G. Claudino, D.-O. Capanema, T.-V. De-Souza, J. C. Serrão, A.-C. Machado Pereira, and G.-P. Nassis, "Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: a Systematic Review," Sport. Med. - Open, vol. 5, no. 1, 2019. [53] E. Morgulev, O. H. Azar, and R. Lidor, “Sports analytics and the big-data era,” Int. J. Data Sci. Anal., vol. 5, no. 4, pp. 213–222, 2018, doi: 10.1007/s41060-017-0093-7. [54] M. J. van der Laan and S. Rose, Targeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies. 2018. [55] D. Bzdok, N. Altman, and M. Krzywinski, “Points of Significance: Statistics versus machine learning,” Nature Methods, vol. 15, no. 4. Nature Publishing Group, pp. 233–234, Apr. 03, 2018, doi: 10.1038/ nmeth.4642. [56] D. van Poppel et al., “Risk factors for overuse injuries in short- and long-distance running: A systematic review,” J. Sport Heal. Sci., vol. 10, no. 1, pp. 14–28, Jan. 2021, doi: 10.1016/J.JSHS.2020.06.006.
RkJQdWJsaXNoZXIy MjY0ODMw