Thesis

1 22 CHAPTER 1 [31] T. Haugen and M. Buchheit, “Sprint Running Performance Monitoring: Methodological and Practical Considerations,” Sport. Med., vol. 46, no. 5, pp. 641–656, 2016, doi: 10.1007/s40279-015-0446-0. [32] D. Van Gool, D. Van Gerven, and J. Boutmans, “The physiological load imposed on soccer players during real match-play.,” in Science and football, W. J. Reilly, T.; Lees, A.; Davids, K.; Murphy, Ed. London: Spon, 1988, pp. 51–59. [33] M. Buchheit, A. Allen, T. K. Poon, M. Modonutti, W. Gregson, and V. Di Salvo, “Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies,” J. Sports Sci., vol. 32, no. 20, pp. 1844–1857, 2014, doi: 10.1080/02640414.2014.942687. [34] L. Torres-Ronda, E. Beanland, S. Whitehead, A. Sweeting, and J. Clubb, “Tracking Systems in Team Sports: A Narrative Review of Applications of the Data and Sport Specific Analysis,” Sport. Med. - Open, vol. 8, no. 1, 2022, doi: 10.1186/s40798-022-00408-z. [35] S. Barris and C. Button, “A review of vision-based motion analysis in sport,” Sport. Med., vol. 38, no. 12, pp. 1025–1043, 2008, doi: 10.2165/00007256-200838120-00006. [36] Statista Technology & Telecommunications, “Connected wearable devices worldwide 2016-2022,” Statista, 2021. https://www.statista.com/statistics/487291/global-connected-wearable-devices/ (accessed Jun. 30, 2021). [37] T. A. Runkler, Data Analytics, 3rd ed. Wiesbaden: Springer Fachmedien Wiesbaden GmbH, 2020. [38] W. E. Nagel and T. Ludwig, “Data Analytics,” Informatik-Spektrum, vol. 42, no. 6, pp. 385–386, 2020. [39] T. H. Davenport, “Analytics in sports: The new science of winning,” Int. Inst. Anal., vol. 2, no. February, pp. 1–28, 2014. [40] P. Nosek, T. E. Brownlee, B. Drust, and M. Andrew, “Feedback of GPS training data within professional English soccer: a comparison of decision making and perceptions between coaches, players and performance staff,” Sci. Med. Footb., vol. 5, no. 1, pp. 35–47, 2021, doi: 10.1080/24733938.2020.1770320. [41] N. Silver, The Signal and the Noise: Why So Many Predictions Fail--but Some Don’t. Penguin Press, 2012. [42] M. Buchheit and B. M. Simpson, “Player-Tracking Technology : Half-Full or Half-Empty Glass ?,” Int. J. Sports Physiol. Perform., vol. 12, no. S2, pp. 35–41, 2017. [43] F. J. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi, and J. Akinjobi, “Supervised Machine Learning Algorithms: Classification and Comparison,” Int. J. Comput. Trends Technol., vol. 48, no. 3, pp. 128–138, 2017, doi: 10.14445/22312803/ijctt-v48p126. [44] M. J. Van der Laan and Rose., Targeted learning. 2012. [45] M. L. Petersen and M. J. Van Der Laan, “Causal models and learning from data: Integrating causal modeling and statistical estimation,” Epidemiology, vol. 25, no. 3, pp. 418–426, 2014, doi: 10.1097/ EDE.0000000000000078. [46] M. J. van der Laan and S. Rose, Targeted Learning, vol. 20. New York, NY: Springer-Verlag New York, 2011. [47] M. L. Petersen, “Applying a Causal Road Map in Settings with Time-dependent Confounding,” Empidemiology, vol. 25, no. 6, pp. 898–901, 2014, doi: 10.1117/12.2549369.Hyperspectral. [48] A. S. Benjamin et al., “Modern machine learning outperforms GLMs at predicting spikes,” bioRxiv, pp. 1–13, 2017, doi: 10.1101/111450. [49] M. L. Petersen and M. J. Van Der Laan, “Causal models and learning from data: Integrating causal modeling and statistical estimation,” Epidemiology, vol. 25, no. 3, pp. 418–426, 2014, doi: 10.1097/

RkJQdWJsaXNoZXIy MjY0ODMw