5B 132 CHAPTER 5B REFERENCES [1] T. B. Dijkhuis, R. Otter, M. Aiello, H. Velthuijsen, and K. Lemmink, “Increase in the Acute:Chronic Workload Ratio relates to Injury Risk in Competitive Runners,” Int. J. Sports Med., vol. 41, no. 11, pp. 736–743, 2020, doi: 10.1055/a-1171-2331. [2] D. Bzdok, N. Altman, and M. Krzywinski, “Points of Significance: Statistics versus machine learning,” Nature Methods, vol. 15, no. 4. Nature Publishing Group, pp. 233–234, Apr. 03, 2018, doi: 10.1038/ nmeth.4642. [3] I. Jebli, F. Z. Belouadha, M. I. Kabbaj, and A. Tilioua, “Prediction of solar energy guided by pearson correlation using machine learning,” Energy, vol. 224, p. 120109, 2021, doi: 10.1016/j.energy.2021.120109. [4] J.-H. Choi, “Investigation of the correlation of building energy use intensity estimated by six building performance simulation tools,” Energy Build., vol. 147, pp. 14–26, 2017, doi: 10.1016/j. enbuild.2017.04.078. [5] A. Fernández, S. García, F. Herrera, and N. V. Chawla, "SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary," J. Artif. Intell. Res., vol. 61, pp. 863–905, 2018, doi: 10.1613/jair.1.11192. [6] T. B. Dijkhuis, F. J. Blaauw, M. W. van Ittersum, H. Velthuijsen, and M. Aiello, “Personalized physical activity coaching: A machine learning approach,” Sensors (Switzerland), vol. 18, no. 2, 2018, doi: 10.3390/ s18020623. [7] S. S. Lövdal, R. J. R. Den Hartigh, and G. Azzopardi, "Injury Prediction in Competitive Runners With Machine Learning," Int. J. Sports Physiol. Perform., vol. 16, no. 10, pp. 1522–1531, 2021, doi: 10.1123/ ijspp.2020-0518. [8] T. B. Dijkhuis et al., “Personalized Physical Activity Coaching: A Machine Learning Approach,” Sensors, vol. 18, no. 2, p. 623, Feb. 2018, doi: 10.3390/s18020623. [9] C. F. Caiafa, Z. Sun, T. Tanaka, P. Marti-Puig, and J. Solé-Casals, "Machine learning methods with noisy, incomplete or small datasets," Appl. Sci., vol. 11, no. 9, May 2021, doi: 10.3390/APP11094132.
RkJQdWJsaXNoZXIy MjY0ODMw