5A 121 INCREASING WORKLOAD RELATES TO INJURY RISK IN RUNNING 561–580, 2019, doi: 10.1007/s40279-019-01218-2. [15] N. B. Murray, T. J. Gabbett, A. D. Townshend, and P. Blanch, “Calculating acute: Chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages,” Br. J. Sports Med., vol. 51, no. 9, pp. 749–754, 2017, doi: 10.1136/ bjsports-2016-097152. [16] P. Menaspà, "Are rolling averages a good way to assess training load for injury prevention?," Br. J. Sports Med., vol. 51, no. 7, pp. 618–619, 2017, doi: 10.1136/bjsports-2016-096131. [17] L. Lolli et al., “Mathematical coupling causes spurious correlation within the conventional acute-tochronic workload ratio calculations,” British journal of sports medicine, vol. 53, no. 15. pp. 921–922, 2019, doi: 10.1136/bjsports-2017-098110. [18] T. J. Gabbett, B. Hulin, P. Blanch, P. Chapman, and D. Bailey, “To Couple or not to Couple? for Acute:Chronic Workload Ratios and Injury Risk, Does it Really Matter?,” Int. J. Sports Med., vol. 40, no. 9, pp. 597–600, 2019, doi: 10.1055/a-0955-5589. [19] S. Malone, A. Owen, M. Newton, B. Mendes, K. D. Collins, and T. J. Gabbett, “The acute:chonic workload ratio in relation to injury risk in professional soccer,” J. Sci. Med. Sport, vol. 20, no. 6, pp. 561–565, 2017, doi: 10.1016/j.jsams.2016.10.014. [20] L. K. Wallace, K. M. Slattery, and A. J. Coutts, “The ecological validity and application of the session-rpe method for quantifying training loads in swimming,” J. Strength Cond. Res., vol. 23, no. 1, pp. 33–38, Jan. 2009, doi: 10.1519/JSC.0b013e3181874512. [21] S. L. Halson, “Monitoring Training Load to Understand Fatigue in Athletes,” Sports Medicine, vol. 44, no. Suppl 2. Springer, pp. 139–147, Nov. 2014, doi: 10.1007/s40279-014-0253-z. [22] C. Foster et al., “A New Approach to Monitoring Exercise Training,” J. Strength Cond. Res., vol. 15, no. 1, pp. 109–115, 2001, doi: 10.1519/00124278-200102000-00019. [23] M. Haddad, G. Stylianides, L. Djaoui, A. Dellal, and K. Chamari, “Session-RPE method for training load monitoring: Validity, ecological usefulness, and influencing factors,” Frontiers in Neuroscience, vol. 11, no. NOV. Frontiers Media SA, p. 612, 2017, doi: 10.3389/fnins.2017.00612. [24] R. Johnston, R. Cahalan, M. O’Keeffe, K. O’Sullivan, and T. Comyns, “The associations between training load and baseline characteristics on musculoskeletal injury and pain in endurance sport populations: A systematic review,” J. Sci. Med. Sport, vol. 21, no. 9, pp. 910–918, Sep. 2018, doi: 10.1016/J. JSAMS.2018.03.001. [25] S. W. Bredeweg, S. Zijlstra, and I. Buist, “The GRONORUN 2 study: effectiveness of a preconditioning program on preventing running related injuries in novice runners. The design of a randomized controlled trial,” BMC Musculoskelet Disord, vol. 11, p. 196, 2010, doi: 10.1186/1471-2474-11-196. [26] C. W. Fuller et al., “Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries.,” Br. J. Sports Med., vol. 40, no. 3, pp. 193–201, Mar. 2006, doi: 10.1136/ bjsm.2005.025270. [27] A. Borg, “Psychophysical Bases of Perceived Exertion.,” Med. Sci. Sport. Exerc., vol. 14, pp. 377–381, 1982. [28] T. J. Gabbett, B. T. Hulin, P. Blanch, and R. Whiteley, “High training workloads alone do not cause sports injuries: how you get there is the real issue,” Br. J. Sports Med., vol. 50, no. 8, pp. 1–2, 2016, doi: 10.1136/
RkJQdWJsaXNoZXIy MjY0ODMw