4 100 CHAPTER 4 REFERENCES [1] M. L. Meldrum, “A brief history of the randomized controlled trial: From oranges and lemons to the gold standard,” Hematol. Oncol. Clin. North Am., vol. 14, no. 4, pp. 745–760, 2000, doi: 10.1016/s08898588(05)70309-9. [2] M. J. van der Laan and S. Rose, Targeted Learning, vol. 20. New York, NY: Springer-Verlag New York, 2011. [3] S. P. Hills et al., “A match-day analysis of the movement profiles of substitutes from a professional soccer club before and after pitch-entry,” PLoS One, vol. 14, no. 1, pp. 1–15, 2019, doi: 10.1371/journal. pone.0211563. [4] P. S. Bradley, C. Lago-Peñas, and E. Rey, "Evaluation of the match performances of substitution players in elite soccer," Int. J. Sports Physiol. Perform., vol. 9, no. 3, pp. 415–424, 2014, doi: 10.1123/ IJSPP.2013-0304. [5] M. J. Van Der Laan, E. C. Polley, and A. E. Hubbard, “Super Learner,” Stat. Appl. Genet. Mol. Biol., vol. 6, no. 1, 2007. [6] A. N. Glynn and K. M. Quinn, “An introduction to the augmented inverse propensity weighted estimator,” Polit. Anal., vol. 18, no. 1, pp. 36–56, 2009, doi: 10.1093/pan/mpp036. [7] C. Lago, L. Casais, E. Dominguez, and J. Sampaio, “The effects of situational variables on distance covered at various speeds in elite soccer,” Eur. J. Sport Sci., vol. 10, no. 2, pp. 103–109, 2010, doi: 10.1080/17461390903273994. [8] J. Castellano, A. Blanco-Villaseñor, and D. Álvarez, "Contextual variables and time-motion analysis in soccer," Int. J. Sports Med., vol. 32, no. 6, pp. 415–421, 2011, doi: 10.1055/s-0031-1271771. [9] V. I. Kalapotharakos, A. Gkaros, and E. Vassliades, “Influence of contextual factors on match running performance in elite soccer team,” J. Phys. Educ. Sport, vol. 20, no. 6, pp. 3267–3272, 2020, doi: 10.7752/ jpes.2020.s6443. [10] A. S. Benjamin et al., “Modern machine learning outperforms GLMs at predicting spikes,” bioRxiv, pp. 1–13, 2017, doi: 10.1101/111450. [11] N. Kreif, S. Gruber, R. Radice, R. Grieve, and J. S. Sekhon, “Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching,” Stat. Methods Med. Res., vol. 25, no. 5, pp. 2315–2336, 2016, doi: 10.1177/0962280214521341. [12] M. Pang, T. Schuster, K. B. Filion, M. Eberg, and R. W. Platt, “Targeted maximum likelihood estimation for pharmacoepidemiologic research,” Epidemiology, vol. 27, no. 4, pp. 570–577, 2016, doi: 10.1097/ EDE.0000000000000487. [13] M. J. van der Laan and D. Rubin, “Targeted maximum likelihood learning,” Int. J. Biostat., vol. 2, no. 1, 2006, doi: 10.2202/1557-4679.1043. [14] T. Modric, S. Versic, D. Sekulic, and S. Liposek, “Analysis of the association between running performance and game performance indicators in professional soccer players,” Int. J. Environ. Res. Public Health, vol. 16, no. 20, 2019, doi: 10.3390/ijerph16204032. [15] M. Kempe, M. Vogelbein, and S. Nopp, “The cream of the crop: Analysing FIFA world cup 2014 and Germany’s title run,” J. Hum. Sport Exerc., vol. 11, no. 1, pp. 42–52, 2016, doi: 10.14198/jhse.2016.111.04. [16] M. Lorenzo-Martínez, A. Padrón-Cabo, E. Rey, and D. Memmert, "Analysis of Physical and Technical
RkJQdWJsaXNoZXIy MjY0ODMw