BIBLIOGRAPHY 137 Saito, T. and Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3). (Cited on page 32.) Santos Buitrago, N., Tonnaer, L., Menkovski, V., and Mavroeidis, D. (2018). Anomaly detection for imbalanced datasets with deep generative models. In 27th Belgian-Dutch Conference on Machine Learning (Benelearn 2018). (Cited on page 36.) Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., and Langs, G. (2017). Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10265 LNCS:146–147. (Cited on pages 28, 30, and 31.) Schott, L., von Kügelgen, J., Träuble, F., Gehler, P., Russell, C., Bethge, M., Schölkopf, B., Locatello, F., and Brendel, W. (2022). Visual Representation Learning Does Not Generalize Strongly Within the Same Domain. In 10th International Conference on Learning Representations (ICLR 2022). (Citedon pages 106, 109, and 125.) Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition and Clustering. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June2015:815–823. (Cited on pages 93, 96, and 97.) Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., and Cui, P. (2021). Towards Out-Of-Distribution Generalization: A Survey. arXiv preprint arxiv.2108.13624. (Cited on pages 8 and 109.) Siddharth, N., Paige, B., Van De Meent, J. W., Desmaison, A., Goodman, N. D., Kohli, P., Wood, F., and Torr, P. H. (2017). Learning Disentangled Representations with Semi-Supervised Deep Generative Models. Advances in Neural Information Processing Systems, 2017-December:5926–5936. (Cited on page 18.) Simonyan, K. and Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. (Cited on page 39.) Sipiran, I., Lazo, P., Lopez, C., Jimenez, M., Bagewadi, N., Bustos, B., Dao, H., Gangisetty, S., Hanik, M., Ho-Thi, N.-P., Holenderski, M., Jarnikov, D., Labrada,
RkJQdWJsaXNoZXIy MjY0ODMw