BIBLIOGRAPHY 133 Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4). (Cited on page 126.) Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann, F. A. (2020). Shortcut Learning in Deep Neural Networks. Nature Machine Intelligence, 2(11):665–673. (Cited on page 2.) Goodfellow, I. (2016). NIPS 2016 Tutorial: Generative Adversarial Networks. (Cited on page 45.) Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative Adversarial Networks. Science Robotics, 3(January):2672–2680. (Cited on pages 27, 28, and 31.) Greenspan, H., Van Ginneken, B., and Summers, R. M. (2016). Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging, 35(5):1153– 1159. (Cited on page 27.) Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Improved Training of Wasserstein GANs. Advances in Neural Information Processing Systems, 2017-December:5768–5778. (Cited on page 40.) Hall, B. C. (2015). Lie Groups, Lie Algebras, and Representations, volume 222 of Graduate Texts in Mathematics. Springer Cham, Cham. (Cited on page 18.) Hammack, D. (2017). Forecasting Lung Cancer Diagnoses with Deep Learning. Technical report, Data Science Bowl 2017. (Cited on page 36.) Havtorn, J. D., Frellsen, J., Hauberg, S., and Maaløe, L. (2021). Hierarchical VAEs Know What They Don’t Know. InProceedings of the 38th International Conference on Machine Learning (ICML 2021). (Cited on page 126.) He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity Mappings in Deep Residual Networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9908 LNCS:630–645. (Cited on page 99.) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., and Deepmind, A. L. (2018). Towards a Definition of Disentangled Representations. arXiv preprint arxiv.1812.02230. (Cited on pages 6, 20, 52, 53, 55, 57, 60, 61, 77, 103, 107, 109, 115, and 124.)
RkJQdWJsaXNoZXIy MjY0ODMw