24 CHAPTER 2 to impaired and dysfunctional motor control in the chronic phase (see Figure 1). This suggested involvement of maladaptive motor planning is illustrated by the promising results of specific rehabilitation after NA. 1 Through rehabilitation focused on relearning motor control, which thus targets cerebral mechanisms, patients with NA can relearn how to correctly position and move their shoulder and arm, which normalises scapular coordination and stability and improves functional capability of the upper extremity. A specific multidisciplinary and personalised rehabilitation programme, consisting of a visit to a specialised outpatient clinic that is followed by 8 sessions of physical and occupational therapy over a period of 16 weeks, has been developed at the Radboud University Medical Center (Radboudumc) in Nijmegen, the Netherlands. This programme combines relearning of motor control with self-management strategies. A clinical pilot study in eight participants showed that this rehabilitation programme can substantially relieve complaints and improve daily function at the level of activities, performance and participation. The programme was feasible, as all patients with NA were able to complete the entire programme. The number needed to treat was low, with 75% of the participants improving on the primary outcome measures. 1 Figure 1 Cerebral reorganisation and rehabilitation after peripheral dysfunction in neuralgic amyotrophy Schematic presentation of the concept that peripheral nerve damage leads to adaptations in motor planning that are compensatory in the acute phase, but lead to impaired motor control in the chronic phase. Neuralgic amyotrophy (NA) is an acute autoimmune inflammation of the brachial plexus, characterised by acute severe upper extremity pain and multifocal paresis. Many patients with NA develop abnormal motor control of the scapular region, scapular dyskinesia, which persists even after peripheral nerve recovery. This suggests that persistent scapular dyskinesia in NA may result frommaladaptive neuroplasticity. Rehabilitation focused on relearning motor control, targeting cerebral mechanisms, can improve scapular movement and positioning, indicating that the impaired motor planning can be restored. This figure includes images that are adapted from Nervous system diagram licensed under the Creative Commons Attribution-Share Alike 4.0 International license, authored by Jordi March i Nogué and William Crochot