588139-Lustenhouwer

165 REFERENCES A somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. The Journal of neuroscience : the official journal of the Society for Neuroscience. Jan 1986;6(1):218-33. 104. Donoghue JP, Suner S, Sanes JN. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp Brain Res. 1990;79(3):492-503. 105. Sanes JN, Suner S, Donoghue JP. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res. 1990;79(3):479-91. 106. Sanes JN, Suner S, Lando JF, Donoghue JP. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proc Natl Acad Sci U S A. Mar 1988;85(6):2003-7. 107. Andoh J, Milde C, Tsao JW, Flor H. Cortical plasticity as a basis of phantom limb pain: Fact or fiction? Neuroscience. Sep 1 2018;387:85-91. doi:10.1016/j.neuroscience.2017.11.015 108. Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N. Phantom movements and pain. An fMRI study in upper limb amputees. Brain. Nov 2001;124(Pt 11):2268-77. 109. Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A. Mapping phantom movement representations in the motor cortex of amputees. Brain. Aug 2006;129(Pt 8):2202-10. doi:10.1093/brain/awl180 110. Maeda Y, Kettner N, Kim J, et al. Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain. May 2016;157(5):1085-93. doi:10.1097/j.pain.0000000000000486 111. Maeda Y, Kettner N, Sheehan J, et al. Altered brain morphometry in carpal tunnel syndrome is associated with median nerve pathology. NeuroImage Clinical. 2013;2:313-319. doi:10.1016/j.nicl.2013.02.001 112. Novak CB, von der Heyde RL. Rehabilitation of the upper extremity following nerve and tendon reconstruction: when and how. Semin Plast Surg. Feb 2015;29(1):73-80. doi:10.1055/s-0035-1544172 113. de Lange FP, Kalkman JS, Bleijenberg G, et al. Neural correlates of the chronic fatigue syndrome--an fMRI study. Brain. Sep 2004;127(Pt 9):1948-57. doi:10.1093/brain/awh225 114. Tabrizi YM, Mazhari S, Nazari MA, Zangiabadi N, Sheibani V, Azarang S. Compromised motor imagery ability in individuals with multiple sclerosis and mild physical disability: an ERP study. Clin Neurol Neurosurg. Sep 2013;115(9):1738-44. doi:10.1016/j.clineuro.2013.04.002 115. Mazhari S, Moghadas Tabrizi Y. Abnormalities of mental rotation of hands associated with speed of information processing and executive function in chronic schizophrenic patients. Psychiatry Clin Neurosci. Jun 2014;68(6):410-7. doi:10.1111/pcn.12148 116. Amesz S, Tessari A, Ottoboni G, Marsden J. An observational study of implicit motor imagery using laterality recognition of the hand after stroke. Brain Inj. 2016;30(8):999-1004. doi:10.3109/02699052.2016.114 7600 117. Moseley GL. Why do people with complex regional pain syndrome take longer to recognize their affected hand? Neurology. Jun 22 2004;62(12):2182-6. 118. Coslett HB, Medina J, Kliot D, Burkey AR. Mental motor imagery indexes pain: the hand laterality task. Eur J Pain. Nov 2010;14(10):1007-13. doi:10.1016/j.ejpain.2010.04.001 119. Pelletier R, Bourbonnais D, Higgins J, Mireault M, Danino MA, Harris PG. Left Right Judgement Task and Sensory, Motor, and Cognitive Assessment in Participants with Wrist/Hand Pain. Rehabil Res Pract. 2018;2018:1530245. doi:10.1155/2018/1530245 120. Pelletier R, Higgins J, Bourbonnais D. Laterality recognition of images, motor performance, and aspects related to pain in participants with and without wrist/hand disorders: An observational cross-sectional study. Musculoskelet Sci Pract. Jun 2018;35:18-24. doi:10.1016/j.msksp.2018.01.010 121. Kishore A, Popa T, Balachandran A, et al. Cerebellar sensory processing alterations impact motor cortical plasticity in Parkinson’s disease: clues from dyskinetic patients. Cereb Cortex. Aug 2014;24(8):2055-67. doi:10.1093/cercor/bht058 122. Lustenhouwer R, Cameron IGM, van Alfen N, et al. Altered sensorimotor representations after recovery from peripheral nerve damage in neuralgic amyotrophy. Cortex. Jun 2020;127:180-190. doi:10.1016/j. cortex.2020.02.011 123. Zapparoli L, Invernizzi P, Gandola M, et al. Like the back of the (right) hand? A new fMRI look on the hand laterality task. Exp Brain Res. Dec 2014;232(12):3873-95. doi:10.1007/s00221-014-4065-z 124. Lustenhouwer R, van Alfen N, Cameron IGM, et al. NA-CONTROL: a study protocol for a randomised controlled trial to compare specific outpatient rehabilitation that targets cerebral mechanisms through relearning motor control and uses self-management strategies to improve functional capability of the upper extremity, to usual care in patients with neuralgic amyotrophy. Trials. Aug 7 2019;20(1):482. doi:10.1186/ s13063-019-3556-4 125. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. May 2007;39(2):175-91. doi:10.3758/ bf03193146 126. Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure: the

RkJQdWJsaXNoZXIy MjY0ODMw