588139-Lustenhouwer

164 APPENDICES 77. Sheskin DJ. The Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/ CRC.; 2003. 78. Girden E. ANOVA: Repeated measures. . Sage; 1992. 79. Townsend JT, Ashby FG. The stochastic modeling of elementary psychological processes. Cambridge University Press; 1983. 80. Woltz DJ, Was CA. Availability of related long-term memory during and after attention focus in working memory. Mem Cognit. Apr 2006;34(3):668-84. 81. Nixon SJ, Lawton-Craddock A, Tivis R, Ceballos N. Nicotine’s effects on attentional efficiency in alcoholics. Alcohol Clin Exp Res. Dec 2007;31(12):2083-91. doi:10.1111/j.1530-0277.2007.00526.x 82. Machizawa MG, Driver J. Principal component analysis of behavioural individual differences suggests that particular aspects of visual working memory may relate to specific aspects of attention. Neuropsychologia. May 2011;49(6):1518-26. doi:10.1016/j.neuropsychologia.2010.11.032 83. Jongsma ML, Meulenbroek RG, Okely J, Baas CM, van der Lubbe RH, Steenbergen B. Effects of hand orientation on motor imagery--event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task. PLoS One. 2013;8(9):e76515. doi:10.1371/journal.pone.0076515 84. Vannuscorps G, Caramazza A. The origin of the biomechanical bias in apparent body movement perception. Neuropsychologia. Aug 2016;89:281-286. doi:10.1016/j.neuropsychologia.2016.05.029 85. Vannuscorps G, Caramazza A. Typical biomechanical bias in the perception of congenitally absent hands. Cortex. Jun 2015;67:147-50. doi:10.1016/j.cortex.2015.02.015 86. Parsons LM, Fox PT. The neural basis of implicit movements used in recognising hand shape. Cogn Neuropsychol. Sep-Dec 1998;15(6-8):583-615. 87. Viswanathan S, Fritz C, Grafton ST. Telling the right hand from the left hand: multisensory integration, not motor imagery, solves the problem. Psychol Sci. Jun 2012;23(6):598-607. doi:10.1177/0956797611429802 88. Pedersen JR, Johannsen P, Bak CK, Kofoed B, Saermark K, Gjedde A. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET. NeuroImage. Aug 1998;8(2):214-20. doi:10.1006/ nimg.1998.0362 89. Gardini S, Venneri A, McGeown WJ, et al. Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation. Brain Topogr. Sep 2016;29(5):679-92. doi:10.1007/s10548-0160491-5 90. Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: Comparing metaanalyses of imagery, observation, and execution. Neurosci Biobehav Rev. Nov 2018;94:31-44. doi:10.1016/j. neubiorev.2018.08.003 91. Randerath J, Valyear KF, Philip BA, Frey SH. Contributions of the parietal cortex to increased efficiency of planning-based action selection. Neuropsychologia. Oct 2017;105:135-143. doi:10.1016/j. neuropsychologia.2017.04.024 92. Whitlock JR. Posterior parietal cortex. Current Biology. 2017/07/24/ 2017;27(14):R691-R695. doi:https://doi.org/10.1016/j.cub.2017.06.007 93. Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain. 1911-1912;34:102-254. 94. Medina J, Coslett HB. From maps to form to space: touch and the body schema. Neuropsychologia. Feb 2010;48(3):645-54. doi:10.1016/j.neuropsychologia.2009.08.017 95. Debarnot U, Huber C, Guillot A, Schwartz S. Sensorimotor representation and functional motor changes following short-term arm immobilization. Behav Neurosci. Oct 8 2018;doi:10.1037/bne0000274 96. Meugnot A, Almecija Y, Toussaint L. The embodied nature of motor imagery processes highlighted by short-term limb immobilization. Exp Psychol. 2014;61(3):180-6. doi:10.1027/1618-3169/a000237 97. Meugnot A, Toussaint L. Functional plasticity of sensorimotor representations following shortterm immobilization of the dominant versus non-dominant hands. Acta Psychol (Amst). Feb 2015;155:51-6. doi:10.1016/j.actpsy.2014.11.013 98. Date S, Kurumadani H, Yoshimura M, et al. Long-term disuse of the hand affects motor imagery ability in patients with complete brachial plexus palsy. Neuroreport. Apr 10 2019;30(6):452-456. doi:10.1097/ WNR.0000000000001229 99. Florence SL, Garraghty PE, Wall JT, Kaas JH. Sensory afferent projections and area 3b somatotopy following median nerve cut and repair in macaque monkeys. Cereb Cortex. Jul-Aug 1994;4(4):391-407. 100. Merzenich MM, Kaas JH, Wall JT, Sur M, Nelson RJ, Felleman DJ. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience. Nov 1983;10(3):639-65. 101. Wall JT, Felleman DJ, Kaas JH. Recovery of normal topography in the somatosensory cortex of monkeys after nerve crush and regeneration. Science (80- ). Aug 19 1983;221(4612):771-3. 102. Wall JT, Kaas JH. Long-term cortical consequences of reinnervation errors after nerve regeneration in monkeys. Brain research. May 07 1986;372(2):400-4. 103. Wall JT, Kaas JH, Sur M, Nelson RJ, Felleman DJ, Merzenich MM. Functional reorganization in

RkJQdWJsaXNoZXIy MjY0ODMw