Thesis

92 Ethnic sorting in football Table 4.2 Estimated predictors of dropout Model 1 Model 2 Model 3 Model 4 Model 5 Intercept -1.874*** (0.009) -1.632*** (0.025 -1.288*** (0.026) -1.335*** (0.026) -1.237*** (0.031) Individual-level variables Age -0.002*** (0.0001) -0.002*** (0.0001) -0.002*** (0.0001) -0.002*** (0.0001) -0.002*** (0.0001) Gender, ref.: male Female 0.396*** (0.003) 0.395*** (0.003) 0.394*** (0.003) 0.394*** (0.003) 0.395*** (0.003) Income, ref.: low Middle income -0.185*** (0.002) -0.183*** (0.002) -0.184*** (0.002) -0.184*** (0.002) -0.184*** (0.002) High income -0.233*** (0.002) -0.231*** (0.002) -0.232*** (0.002) -0.232*** (0.002) -0.232*** (0.002) Ethnicity, ref.: Dutch Migrant background 0.317*** (0.002) 0.316*** (0.002) 0.035*** (0.007) 0.034*** (0.007) -0.061** (0.025) Club-level variables Club size 0.0004*** (0.00001) 0.0004*** (0.00001) 0.0003*** (0.00001) 0.0003*** (0.00001) Income share, ref.: low Middle income -0.004*** (0.0003) -0.004*** (0.0003) -0.004*** (0.0003) -0.004*** (0.0003) High income -0.007*** (0.0004) -0.007*** (0.0004) -0.006*** (0.0004) -0.006*** (0.0004) Ingroup share -0.004*** (0.0001) -0.005*** (0.0001) -0.006*** (0.0003) Outgroup fractionalization 0.001*** (0.0001) 0.002*** (0.0001) Cross-level interactions Migrant*ingroup share 0.002*** (0.0001) Migrant*outgroup fractionalization -0.0004** (0.0002) Note: * p < .05, ** p < .01, *** p < .001, N: 10,205,331 observations nested in 2,778 clubs, complementary log-log link function, adjusted for membership duration (number of playing seasons) and time period (per playing season).

RkJQdWJsaXNoZXIy MjY0ODMw