31 Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 2009;58(8):1152-67. doi: 10.1136/ gut.2008.163667. Pereira C, Grácio D, Teixeira JP, Magro F. Oxidative Stress and DNA Damage: Implications in Inflammatory Bowel Disease. Inflamm Bowel Dis 2015;21(10):2403-17. doi: 10.1097/MIB.0000000000000506. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol 2014;14:189. doi: 10.1186/s12876014-0189-7. Arslan G, Atasever T, Cindoruk M, Yildirim IS. (51)CrEDTA colonic permeability and therapy response in patients with ulcerative colitis. Nucl Med Commun 2001;22(9):997-1001. doi: 10.1097/00006231200109000-00009. O’Morain CA, Abelow AC, Chervu LR, Fleischner GM, Das KM. Chromium 51-ethylenediaminetetraacetate test: a useful test in the assessment of inflammatory bowel disease. J Lab Clin Med 1986;108(5):430-5. Pironi L, Miglioli M, Ruggeri E, Levorato M, Dallasta MA, Corbelli C, et al. Relationship between intestinal permeability to [51Cr]EDTA and inflammatory activity in asymptomatic patients with Crohn’s disease. Dig Dis Sci 1990;35(5):582-8. doi: 10.1007/BF01540405. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015;4:180-3. doi: 10.1016/j. redox.2015.01.002. Frenay AS, de Borst MH, Bachtler M, Tschopp N, Keyzer CA, van den Berg E, et al. Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients. Free Radic Biol Med 2016;99:345-351. doi: 10.1016/j.freeradbiomed.2016.08.024. Koning AM, Meijers WC, Pasch A, Leuvenink HGD, Frenay AS, Dekker MM, et al. Serum free thiols in chronic heart failure. Pharmacol Res 2016;111:452-458. doi: 10.1016/j.phrs.2016.06.027. Banne AF, Amiri A, Pero RW. Reduced level of serum thiols in patients with a diagnosis of active disease. J Anti Aging Med 2003;6(4):327-34. doi: 10.1089/109454503323028920. Fagundes RR, Taylor CT. Determinants of hypoxia-inducible factor activity in the intestinal mucosa. J Appl Physiol (1985) 2017;123(5):1328-1334. doi: 10.1152/japplphysiol.00203.2017. Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 2017;17(12):774-785. doi: 10.1038/nri.2017.103. Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol 2015;309(6):C350-60. doi: 10.1152/ajpcell.00191.2015. Brown E, Taylor CT. Hypoxia-sensitive pathways in intestinal inflammation. J Physiol 2018;596(15):29852989. doi: 10.1113/JP274350. Siegmund B, Feakins RM, Barmias G, Ludvig JC, Teixeira FV, Rogler G, et al. Results of the Fifth Scientific Workshop of the ECCO (II): Pathophysiology of Perianal Fistulizing Disease. J Crohns Colitis 2016;10(4):37786. doi: 10.1093/ecco-jcc/jjv228. Peyrin-Biroulet L, Loftus EV Jr, Colombel JF, Sandborn WJ. The natural history of adult Crohn’s disease in population-based cohorts. Am J Gastroenterol 2010;105(2):289-97. doi: 10.1038/ajg.2009.579. Shimshoni E, Yablecovitch D, Baram L, Dotan I, Sagi I. ECM remodelling in IBD: innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut 2015;64(3):367-72. doi: 10.1136/gutjnl-2014-308048. Rieder F, Fiocchi C. Intestinal fibrosis in IBD–a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol 2009;6(4):228-35. doi: 10.1038/nrgastro.2009.31. Ravi A, Garg P, Sitaraman SV. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis 2007;13(1):97-107. doi: 10.1002/ibd.20011. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 General introduction and outline of the thesis
RkJQdWJsaXNoZXIy MjY0ODMw