584063-Bourgonje

216 Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 2015;18(6):576-81. doi: 10.1097/MCO.0000000000000226. Walters JRF, TasleemAM, Omer OS, BrydonWG, DewT, le Roux CW. Anewmechanism for bile aciddiarrhea: defective feedback inhibition of bile acid biosynthesis. Clin Gastroenterol Hepatol 2009;7(11):1189-94. doi: 10.1016/j.cgh.2009.04.024. Ryan FJ, Ahern AM, Fitzgerald RS, Laserna-Mendieta EJ, Power EM, Clooney AG, et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun 2020;11(1):1512. doi: 10.1038/s41467-020-15342-5. Yılmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med 2019;25(2):323-326. doi: 10.1038/s41591-018-0308-z. Saez-Lara MJ, Gomez-Llorente, Plaza-Diaz J, Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. Biomed Res Int 2015;2015:505878. doi: 10.1155/2015/505878. Hediger MA, Clémençon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 2013;34(2-3):95-107. doi: 10.1016/j.mam.2012.12.009. Pérez-Torres S, Iglesias I, Llopis M, Lozano JJ, Antolín M, Guarner F, et al. Transportome Profiling Identifies Profound Alterations in Crohn’s Disease Partially Restored by Commensal Bacteria. J Crohns Colitis 2016;10(7):850-9. doi: 10.1093/ecco-jcc/jjw042. Kotka M, Lieden A, Pettersson S, Trinchieri V, Masci A, D’Amato M. Solute carriers (SLC) in inflammatory bowel disease: a potential target of probiotics? J Clin Gastroenterol 2008;42 Suppl 3 Pt 1:S133-5. doi: 10.1097/MCG.0b013e31815f5ab6. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021;66:103293. doi: 10.1016/j.ebiom.2021.103293. Salazar N, Neyrinck AM, Bindels LB, Druart C, Ruas-Madiedo P, Cani PD, et al. Functional Effects of EPSProducing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Front Microbiol 2019;10:1809. doi: 10.3389/fmicb.2019.01809. Sun S, Luo L, LiangW, YinQ, Guo J, Rush AM, et al. Bifidobacteriumalters the gut microbiota andmodulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc Natl Acad Sci U S A 2020;117(44):27509-27515. doi: 10.1073/pnas.1921223117. Ray M, Hor PK, Ojha D, Soren JP, Singh SN, Mondal KC. Bifidobacteria and its rice fermented products on diet induced obese mice: analysis of physical status, serum profile and gene expressions. Benef Microbes 2018;9(3):441-452. doi: 10.3920/BM2017.0056. Lim SM, Kim DH. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota. Nutr Res 2017;41:8696. doi: 10.1016/j.nutres.2017.04.003. Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B. Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in mice. BMC Gastroenterol 2006;6:31. doi: 10.1186/1471-230X-6-31. Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 2011;9(5):390-403. doi: 10.1016/j.chom.2011.04.009. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal hostmicrobial relationships in the intestine. Science 2001;291(5505):881-4. doi: 10.1126/science.291.5505.881. Chapter 6 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

RkJQdWJsaXNoZXIy MjY0ODMw