Thesis

5 Design study I: How to create an ambulatory app for patients with BPP 181 46. McMain, S., et al., An exploratory study of the relationship between changes in emotion and cognitive processes and treatment outcome in borderline personality disorder. Psychotherapy Research, 2013. 23(6): p. 658-673. 47. Lane, R., et al., The Levels of Emotional Awareness Scale: a cognitivedevelopmental measure of emotion. J Pers Assess, 1990. 55: p. 124 - 134. 48. Greenberg, L.S., Emotion and Cognition in Psychotherapy: The Transforming Power of Affect. Canadian Psychology/Psychologie canadienne, 2008. 49(1): p. 49-59. 49. van Asselt, A.D.I., et al., The cost of borderline personality disorder: societal cost of illness in BPD-patients. European Psychiatry, 2007. 22(6): p. 354-361. 50. Wagner, T., et al., Societal cost-of-illness of borderline personality disorder. Zeitschrift fur Klinische Psychologie und Psychotherapie, 2013. 42(4): p. 242255. 51. March, S.T. and Smith, G.F., Design and natural science research on information technology. Decision Support Systems, 1995. 15(4): p. 251-266. 52. van Aken, J.E., Management Research Based on the Paradigm of the Design Sciences: The Quest for Field-Tested and Grounded Technological Rules. Journal of Management Studies, 2004. 41(2): p. 219-246. 53. Adibi, S., Mobile Health: A Technology Road Map. 2015: Springer. 54. Noordzij, D.M.L., P. Scholten, and M.E. Laroy-Noordzij, Measuring Electrodermal Activity of Both Individuals With SevereMental Disabilities and Their Caretakers During Episodes of Challenging Behavior, in Proceedings of Measuring Behavior, A.J. Spink, et al., Editors. 2012, Noldus Information Technology BV: Utrecht, The Netherlands. p. 201 - 205. 55. Kanjo, E., L. Al-Husain, and A. Chamberlain, Emotions in context: examining pervasive affective sensing systems, applications, and analyses. Personal and Ubiquitous Computing, 2015. 19(7): p. 1197-1212. 56. Myrtek, M., E. Aschenbrenner, and G. Brügner, Emotions in everyday life: an ambulatory monitoring study with female students. Biological Psychology, 2005. 68(3): p. 237-255. 57. Leite, I., et al. Sensors in the wild: Exploring electrodermal activity in childrobot interaction. 2013. 58. Picard, R.W., Measuring Affect in the Wild, in Affective Computing and Intelligent Interaction, Pt I, S. Dmello, et al., Editors. 2011. p. 3-3. 59. De Santos Sierra, A., et al. Stress detection by means of stress physiological template. in Proceedings of the 2011 3rd World Congress on Nature and Biologically Inspired Computing, NaBIC 2011. 2011. 60. Salazar-Ramirez, A., E. Irigoyen, and R. Martinez, Enhancements for a Robust Fuzzy Detection of Stress, in International Joint Conference SOCO’14CISIS’14-ICEUTE’14, J.G. de la Puerta, et al., Editors. 2014, Springer International Publishing. p. 229-238. 61. Ivonin, L., et al., Automatic recognition of the unconscious reactions from physiological signals. 2013. p. 16-35.

RkJQdWJsaXNoZXIy MjY0ODMw